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Ternary Goldbach problem
The counting function for the number of representations of an odd integer N
as the sum of three primes is

r(N) =
∑

p1+p2+p3=N

1.

The following is Vinogradov’s asymptotic formula for r(N).

Theorem (Vinogradov)
There exists an arithmetic function S(N) and c1, c2 ∈ R+ such that

c1 < S(N) < c2

for all sufficiently large odd integers N, and

r(N) = G(N)
N2

2(logN)3

(
1 + O

(
log logN
logN

))
.

The arithmetic function S(N) is called the singular series for the ternary
Goldbach problem.



The singular series
▶ We begin by studying the arithmetic function

S(N) =

∞∑
q=1

µ(q)cq(N)

φ(q)3 ,

where

cq(N) =

q∑
a=1

(q,a)=1

e(aN/q)

is Ramanujan’s sum.
▶ The function S(N) is called the singular series for the ternary

Goldbach problem.
▶ The Ramanujan sum cq(n) is a multiplicative function of q; that is, if

(q, q′) = 1, then
cqq′(n) = cq(n) · cq′(n).

▶ The Ramanujan sum can be expressed in the form

cq(n) =
∑

d|(q,n)

µ
(q

d

)
d,

▶ In particular, if (q, n) = 1, then cq(n) = µ(q).



The singular series

Theorem
The singular series S(N) converges absolutely and uniformly in N and has
the Euler product representation

S(N) =
∏

p

(
1 +

1
(p − 1)3

)∏
p|N

(
1 − 1

p2 − 3p + 3

)
.

There exist positive constants c1 and c2 such that

c1 < S(N) < c2,

for all positive integers N. Moreover, for any ε > 0,

S(N,Q) =
∑
q≤Q

µ(q)cq(N)

φ(q)3 = S(N) + O
(

Q−(1−ε)
)
,

where the implied constant depends only on ε ∈ (0, 1).



Decomposition into major and minor arcs
▶ We decompose the unit interval [0, 1] into two disjoint sets: the major

arcs M and the minor arcs m.
▶ Let B > 0 and set

Q = (logN)B

▶ For 1 ≤ q ≤ Q and 0 ≤ a ≤ q satisfying (a, q) = 1, the major arc
M(q, a) is the interval consisting of all real numbers α ∈ [0, 1] so that∣∣∣∣α− a

q

∣∣∣∣ ≤ Q
N
.

▶ If α ∈ M(q, a) ∩M (q′, a′) and a/q ̸= a′/q′, then |aq′ − a′q| ≥ 1 and

1
Q2 ≤ 1

qq′ ≤
|aq′ − a′q|

qq′
=

∣∣∣∣aq − a′

q′

∣∣∣∣
≤
∣∣∣∣aq − α

∣∣∣∣+ ∣∣∣∣α− a′

q′

∣∣∣∣ ≤ 2Q
N

or, equivalently,
N ≤ 2Q3 = 2(logN)3B,

▶ This is impossible for N sufficiently large.



Decomposition into major and minor arcs

▶ Therefore, the major arcs M(q, a) are pairwise disjoint for large N. The
set of major arcs is

M =

Q⋃
q=1

q⋃
a=0

(a,q)=1

M(q, a) ⊆ [0, 1],

and the set of minor arcs is

m = [0, 1]\M,

▶ We consider a weighted sum over the representations of N as a sum of
three primes:

R(N) =
∑

p1+p2+p1=N

log p1 log p2 log p3

▶ Vinogradov obtained an asymptotic formula for R(N), from which the
ternary Goldbach problem will follow by an elementary argument.



Circle method
▶ We can use the circle method to express the representation function

R(N) as the integral of a trigonometric polynomial over the major and
minor arcs. Let

F(α) =
∑
p≤N

(log p)e(pα).

▶ This exponential sum over primes is the generating function for R(N):

R(N) =
∑

p1+p2+p3=N

log p1 log p2 log p3

=

∫ 1

0
F(α)3e(−Nα)dα

=

∫
M

F(α)3e(−Nα)dα+

∫
m

F(α)3e(−Nα)dα.

▶ The main term in Vinogradov’s theorem will come from the integral
over the major arcs, and the integral over the minor arcs will be
negligible.

▶ Just as in the Hardy–Littlewood asymptotic formula, the integral over
the major arcs in Vinogradov’s theorem is (except for a small error
term) the product of the singular series S(N) and an integral J(N). In
this case, the integral J(N) is very easy to evaluate.



The integral over the major arcs
Lemma
Let

u(β) =
N∑

m=1

e(mβ).

Then

J(N) =

∫ 1/2

−1/2
u(β)3e(−Nβ)dβ =

N2

2
+ O(N).

Proof.
The number of representations of N as the sum of three positive integers is

J(N) =

∫ 1/2

−1/2
u(β)3e(−Nβ)dβ

=

∫ 1/2

−1/2

N∑
m1=1

N∑
m2=1

N∑
m3=1

e ((m1 + m2 + m3 − N)β) dβ

=

(
N − 1

2

)
=

N2

2
+ O(N).



Siegel–Walfisz and approximations

Theorem
If q ∈ Z+ and (q, a) = 1, then, for any C > 0, one has

ϑ(x; q, a) =
∑
p≤x

p=a( mod q)

log p =
x

φ(q)
+ O

(
x

(log x)C

)

for all x ≥ 2, where the implied constant depends only on C.

Lemma
Let

Fx(α) =
∑
p=1

(log p)e(pα).

Let B,C ∈ R+. If 1 ≤ q ≤ Q = (logN)B and (q, a) = 1, then

Fx(a/q) =
µ(q)
φ(q)

x + O
(

QN
(logN)C

)
for 1 ≤ x ≤ N, where the implied constant depends only on B and C.



Further approximations

Remember that

u(β) =
N∑

m=1

e(mβ).

Lemma
Let B,C ∈ R+ be such that C > 2B. If α ∈ M(q, a) and β = α− a/q, then

F(α) =
µ(q)
φ(q)

u(β) + O
(

Q2N
(logN)C

)
,

and

F(α)3 =
µ(q)
φ(q)3 u(β)3 + O

(
Q2N3

(logN)C

)
,

where the implied constants depend only on B and C.



Contribution on major arcs

Theorem
For any B,C, ε ∈ R+ with C > 2B, the integral over the major arcs is∫

M

F(α)3e(−Nα)dα = S(N)
N2

2

+ O
(

N2

(logN)(1−ε)B

)
+ O

(
N2

(logN)C−5B

)
,

where the implied constants depend only on B,C, and ε.



An exponential sum over primes

Recall that
F(α) =

∑
p≤N

(log p)e(pα).

Theorem (Vinogradov’s inequality)
If ∣∣∣∣α− a

q

∣∣∣∣ ≤ 1
q2 ,

where a, q ∈ Z are such that 1 ≤ q ≤ N and (a, q) = 1, then

|F(α)| = O
((

N
q1/2 + N4/5 + N1/2q1/2

)
(logN)4

)
.



Vaughan’s identity

Lemma (Vaughan’s identity)
For u ≥ 1, let

Mu(k) =
∑
d,k

d≤u

µ(d).

Let Φ(k, l) be an arithmetic function of two variables. Then∑
u<l≤N

Φ(1, l) +
∑

u<k≤N

∑
u<l≤ N

k

Mu(k)Φ(k, l) =
∑
d≤u

∑
u<l≤ N

d

∑
m≤ N

ld

µ(d)Φ(dm, l).

Proof.
Hint: evaluate the sum

S =

N∑
k=1

∑
u<l≤ N

k

Mu(k)Φ(k, l)

in two different ways.



Vaughan’s identity in estimates of exponential sums
Lemma
Let Λ(l) be the von Mangoldt function. For every α ∈ R, one has

F(α) =
∑
p≤N

(log p)e(pα) = S1 − S2 − S3 + O
(
N1/2),

where
S1 =

∑
d≤N2/5

∑
l≤ N

d

∑
m≤ N

ld

µ(d)Λ(l)e(αdlm),

S2 =
∑

d≤N2/5

∑
l≤N2/5

∑
m≤ N

ld

µ(d)Λ(l)e(αdlm),

and
S3 =

∑
k>N2/S

∑
N2/5<l≤N/k

MN2/5(k)Λ(l)e(αkl).

Proof.
Apply Vaughan’s identity with u = N2/5 and Φ(k, l) = Λ(l)e(αkl), and note∑

u<l≤N

Φ(1, l) = F(α) + O
(
N1/2).



Proof of Vinogradov’s inequality
Lemma
If ∣∣∣∣α− a

q

∣∣∣∣ ≤ 1
q2 ,

where 1 ≤ q ≤ N and (a, q) = 1, then

|S1| = O
((

N
q
+ N2/5 + q

)
(logN)2

)
.

Lemma
If ∣∣∣∣α− a

q

∣∣∣∣ ≤ 1
q2 ,

where 1 ≤ q ≤ N and (a, q) = 1, then

|S2| = O
((

N
q
+ N4/5 + q

)
(logN)2

)
.



Proof of Vinogradov’s inequality

Lemma
If ∣∣∣∣α− a

q

∣∣∣∣ ≤ 1
q2 ,

where 1 ≤ q ≤ N and (a, q) = 1, then

|S3| = O
((

N
q1/2 + N4/5 + N1/2q1/2

)
(logN)4

)
.

Theorem
For any B > 0, we have∣∣∣ ∫

m

F(α)3e(−αN)dα
∣∣∣ = O

(
N2

(logN)(B/2)−5

)
.

where the implied constant depends only on B.



Proof
▶ Recall that Q = (logN)B. Let α ∈ m = [0, 1]\M. By Dirichlet’s

theoremfor any real number α there exists a fraction a/q ∈ [0, 1] with
1 ≤ q ≤ N/Q and (a, q) = 1 such that∣∣∣∣α− a

q

∣∣∣∣ ≤ Q
qN

≤ min

(
Q
N
,

1
q2

)
.

▶ If q ≤ Q, then α ∈ M(q, a) ⊆ M, which is false. Therefore,

Q < q ≤ N
Q
.

▶ Then by the previous theorem we obtain

|F(α)| = O
((

N
q1/2 + N4/5 + N1/2q1/2

)
(logN)4

)
= O

((
N

(logN)B/2 + N4/5 + N1/2
(

N
(logN)B

)1/2
)
(logN)4

)
= O

(
N

(logN)(B/2)−4

)
.



Proof
▶ Since

ϑ(N) =
∑
p≤N

log p = O(N),

we have∫ 1

0
|F(α)|2dα =

∑
p≤N

(log p)2 ≤ logN
∑
p≤N

log p = O(N logN).

▶ Thus ∫
m

|F(α)|3dα = O
(
sup{|F(α)| : α ∈ m}

∫
m

|F(α)|2dα
)

= O
(

N
(logN)(B/2)−4

∫ 1

0
|F(α)|2dα

)
= O

(
N2

(logN)(B/2)−5

)
.

This completes the proof.



Vinogradov’s theorem

Theorem (Vinogradov)
Let S(N) be the singular series for the ternary Goldbach problem, i.e.

S(N) =
∏

p

(
1 +

1
(p − 1)3

)∏
p|N

(
1 − 1

p2 − 3p + 3

)
.

▶ For all sufficiently large odd integers N and for every A > 0, we have

R(N) =
∑

p1+p2+p1=N

log p1 log p2 log p3 = S(N)
N2

2
+ O

(
N2

(logN)A

)
,

where the implied constant depends only on A.
▶ In particular, we have

r(N) =
∑

p1+p2+p3=N

1 = S(N)
N2

2(logN)3

(
1 + O

(
log logN
logN

))
.


