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Arithmetic functions
Definition
An arithmetic function is a map f : Z+ → C, i.e., a sequence of complex
numbers, although this viewpoint is not very useful.

Examples of arithmetic functions
▶ The constant 1 and the identity Id functions are defined respectively by

1(n) := 1 and Id(n) := n for all n ∈ Z+.

▶ The Dirac delta function δm is defined as follows

δm(n) =

{
1 if n = m,

0 otherwise.

We shall abbreviate δ1 to δ.
▶ The divisor function τ(n) is the number of positive divisors of n ∈ Z+,

τ(n) := #{d ∈ Z+ : d | n} =
∑
d|n

1.

Some authors also use the notation d(n) for the divisor function.



Examples of arithmetic functions
▶ More generally, the sum of powers of divisors is defined by

σk(n) :=
∑
d|n

dk, where k ∈ N.

Observe that τ(n) = σ0(n), and we abbreviate σ1 to σ.
▶ The Euler totient function φ is defined by

φ(n) := #{m ∈ [n] : (n,m) = 1} =
∑

m∈[n]

δ((n,m)).

▶ The function ω is defined as follows: ω(1) = 0 and ω(n) counts the
number of distinct prime factors of n for all n ≥ 2.

▶ The function Ω is defined as follows: Ω(1) = 0 and Ω(n) counts the
number of prime factors of n with multiplicities for all n ≥ 2.

▶ The Liouville function λ is defined as follows

λ(n) = (−1)Ω(n).



Examples of arithmetic functions

▶ The Möbius function µ(n) is defined as follows

µ(n) :=


1 if n = 1,
(−1)k if n is the product of k distinct primes,
0 if n is divisible by the square of a prime.

▶ The von Mangoldt function Λ(n) is defined as follows

Λ(n) :=

{
log p if n = pk is a prime power,
0 otherwise.

▶ Clearly, sums and products of arithmetic functions are still arithmetic
functions.

( f + g)(n) := f (n) + g(n) and ( f · g)(n) := f (n) · g(n).

▶ The other ways of multiplying arithmetic functions, such as Dirichlet
convolution, will be discussed shortly.



Rings
Definition
A ring is defined as a set K := (K,+, ·) equipped with two binary
operations, commonly denoted as addition +, and multiplication ·, such that

(i) (K,+) is an abelian group, meaning that:
▶ There exists an additive identity 0 ∈ K such that a + 0 = 0 + a = a for

all a ∈ K.
▶ For every a ∈ K, there exists an additive inverse −a ∈ K such that

a + (−a) = 0.
▶ Addition is commutative: a + b = b + a for all a, b ∈ K.
▶ Addition is associative: (a + b) + c = a + (b + c) for all a, b, c ∈ K.

(ii) (K, ·) is a monoid under multiplication, meaning that:
▶ Multiplication is associative: (a · b) · c = a · (b · c) for all a, b, c ∈ K.
▶ There exists a multiplicative identity 1 ∈ K such that a · 1 = 1 · a = a for

all a ∈ K.

(iii) Multiplication is distributive with respect to addition, meaning that:
▶ For all a, b, c ∈ K, the following hold:

a · (b + c) = a · b + a · c

(a + b) · c = a · c + b · c



Examples of rings
▶ We say that a ring K is commutative, if it satisfies conditions (i)–(iii)

and additionally
xy = yx for all x, y ∈ K.

▶ The sets Z,Q,R and C are examples of commutative rings. The set
M2(C) of 2 × 2 matrices with complex coefficients and the usual matrix
addition and multiplication is a noncommutative ring.

▶ Let K and L be rings with multiplicative identities 1K and 1L,
respectively. A map f : K → L is called a ring homomorphism if

f (x+y) = f (x)+f (y) and f (xy) = f (x)f (y) for all x, y ∈ K, and f (1R) = 1S.

▶ An element a in the ring K is called a unit or invertible element if there
exists an element x ∈ K, (which in fact is unique), such that

ax = xa = 1.

Then x is called the inverse for a and is denoted by a−1.
▶ The set K× of all units in K forms a multiplicative group, called the

group of units in the ring K.
▶ A field is a commutative ring in which every nonzero element is a unit.

For example, the rational numbers Q, real numbers R, and complex
numbers C are fields. The integers Z form a ring but not a field, and the
only units in the ring of integers are ±1.



Dirichlet convolutions
Definition
The Dirichlet convolution f ⋆ g is defined by

( f ⋆ g)(n) =
∑
d|n

f (d)g
(n

d

)
,

where the sum is over all positive divisors d of n. Dirichlet convolution
occurs frequently in multiplicative problems in elementary number theory.

Theorem
The set A := (A,+, ⋆) of all complex-valued arithmetic functions, with
addition + defined by pointwise sum and multiplication ⋆ defined by
Dirichlet convolution, is a commutative ring with additive identity 0 and
multiplicative identity δ, which is the Dirac delta at 1. Furthermore, if
f (1) ̸= 0, then f is invertible.

Proof.
Let D(n) := {d ∈ [n] : d | n} be the set of all positive divisors of n.

( f ⋆ g)(n) =
∑
d|n

f (d)g
(n

d

)
=

∑
d|n

f
(n

d

)
g(d),

since the mapping D(n) ∋ d 7→ n/d ∈ D(n) is one-to-one.



Proof
▶ Now let f , g and h be three arithmetic functions and n ∈ Z+. Then

(( f ⋆ g) ⋆ h)(n) =
∑
d|n

( f ⋆ g)(d)h
(n

d

)
=
∑
d|n

∑
c|d

f (c)g
(

d
c

)
h
(n

d

)
,

and

( f ⋆ ( g ⋆ h))(n) =
∑
d|n

f (d)(g ⋆ h)
(n

d

)
=
∑
d|n

f (d)
∑

c|(n/d)

g(c)h
( n

cd

)
.

Setting e = cd in the last inner sum gives

( f ⋆ (g ⋆ h))(n) =
∑
e|n

∑
d|e

f (d)g
( e

d

)
h
(n

e

)
= ((f ⋆ g) ⋆ h)(n)

establishing the associativity.
▶ We also have

(δ ⋆ f ) (n) =
∑
d|n

δ(d)f
(n

d

)
= f (n).



Proof
▶ Finally, we prove the invertibility by constructing inductively the

inverse g of an arithmetic function f satisfying f (1) ̸= 0. The function g
is the inverse of f if and only if ( f ⋆ g)(1) = 1 and ( f ⋆ g)(n) = 0 for
all n > 1. This is equivalent to

f (1)g(1) = 1,∑
d|n g(d)f

( n
d

)
= 0 for n ⩾ 2.

▶ Since f (1) ̸= 0, we have g(1) = f (1)−1 by the first equation. Now let
n > 1 and assume that we have proved that there exist unique values
g(1), . . . , g(n − 1) satisfying the above equations. Since f (1) ̸= 0, the
second equation above is equivalent to

g(n) = − 1
f (1)

∑
d|n

d ̸=n

g(d)f
(n

d

)
,

which determines g(n) in a unique way by the induction hypothesis,
and this definition of g(n) shows that the equations above are satisfied,
which completes the proof.



Multiplicative functions

Definition
Let f : Z+ → C be an arithmetic function.
▶ The function f is said to be multiplicative if f (1) ̸= 0 and if, for all

positive integers m, n ∈ Z+ such that (m, n) = 1, we have

f (mn) = f (m)f (n).

▶ The function f is completely multiplicative if f (1) ̸= 0 and if the
condition

f (mn) = f (m)f (n)

holds for all positive integers m and n.
▶ The function f is strongly multiplicative if f is multiplicative and if

f (pα) = f (p) for all prime powers pα.

Remark
The condition f (1) ̸= 0 is a convention to exclude the zero function from the
set of multiplicative functions. Furthermore, it is easily seen that if f and g
are multiplicative, then so are fg and f/g with g ̸= 0 for the quotient.



Additive functions

Let f : Z+ → C be an arithmetic function.
▶ The function f is said to be additive if for all positive integers

m, n ∈ Z+ such that (m, n) = 1, we have

f (mn) = f (m) + f (n).

▶ The function f is completely additive if the condition

f (mn) = f (m) + f (n)

holds for all positive integers m and n.
▶ The function f is strongly additive if f is multiplicative and if

f (pα) = f (p) for all prime powers pα.



Additive and multiplicative functions: simple criterium

Lemma (Exercise, prove it!)
Let f : Z+ → C be an arithmetic function.

(i) f is multiplicative if and only if f (1) = 1 and for all n = pα1
1 · · · pαr

r ,
where the pi are distinct primes, we have

f (n) =
∏
j∈[r]

f
(
pαj

j

)
.

(ii) f is additive if and only if f (1) = 0 and for all n = pα1
1 · · · pαr

r , where
the pi are distinct primes, we have

f (n) =
∑
j∈[r]

f
(
pαj

j

)
.

Theorem
If f , g : Z+ → C are multiplicative, then so is f ⋆ g.



Proof

▶ Let f and g be two multiplicative functions and let m, n ∈ Z+ be such
that (m, n) = 1.

▶ Note that each divisor d of mn can be written uniquely in the form
d = ab with a | m, and b | n and (a, b) = 1.

▶ Hence,

( f ⋆ g)(mn) =
∑
d|mn

f (d)g
(mn

d

)
=
∑
a|m

∑
b|n

f (ab)g
(mn

ab

)
.

▶ Since f and g are multiplicative and (a, b) = (m/a, n/b) = 1, we infer
that

( f ⋆ g)(mn) =
∑
a|m

∑
b|n

f (a)f (b)g
(m

a

)
g
(n

b

)
= (f ⋆ g)(m)(f ⋆ g)(n)

as required.



Examples
▶ The functions 1, Id, δ are completely multiplicative, whereas log and Ω

are strongly additive and consequently the function λ is completely
multiplicative.

▶ Since τ = 1 ⋆ 1, σ = 1 ⋆ Id and σk = 1 ⋆ Idk and both 1 and Id are
completely multiplicative, so are d, σ and σk.

▶ It is easily seen that, for all m, n ∈ Z+, we have

ω(mn) = ω(m) + ω(n)− ω(m, n),

since in the sum ω(m) + ω(n), the prime factors of (m, n) have been
counted twice. This implies the additivity of ω.

▶ The Möbius function µ(n) is multiplicative. Indeed, µ(1) = 1 and for
all prime powers pα, we also have

µ(pα) =

{
−1, if α = 1,

0, otherwise.

So that, if n = pα1
1 pα2

2 · · · pαr
r where the pi are distinct primes, we have

µ(pα1
1 ) · · ·µ(pαr

r ) =

{
(−1)r, if α1 = · · · = αr = 1,

0, otherwise.

Hence µ(pα1
1 ) · · ·µ(pαr

r ) = µ(n) as desired.



Properties of Möbius function
▶ We intend to prove the following identity µ ⋆ 1 = δ, i.e.

(µ ⋆ 1)(n) =
∑
d|n

µ(d) = δ(n) =

{
1, if n = 1,
0, if n > 1.

▶ Now since µ and 1 are multiplicative, so is the function µ ⋆ 1 by the
previous theorem and hence (µ ⋆ 1)(1) = 1 = δ(1) is true for n = 1.

▶ Besides, it is sufficient to prove µ ⋆ 1 = δ for prime powers by the
previous lemma, which is easy to check. Indeed,

(µ ⋆ 1) (pα) =

α∑
j=0

µ
(
pj) = µ(1) + µ(p) = 1 − 1 = 0 = δ(pα)

as asserted.
▶ Using the identity µ ⋆ 1 = δ, we deduce

g = f ⋆ 1 ⇐⇒ g ⋆ µ = f ⋆ (1 ⋆ µ) = f .

This relation is called the Möbius inversion formula.



Möbius inversion formula
The Möbius inversion formula is a key part of the estimates of average
orders of certain multiplicative functions.

Theorem (Möbius inversion formula)
Let f and g be two arithmetic functions. Then we have

g = f ⋆ 1 ⇐⇒ f = g ⋆ µ

Equivalently, by expanding Dirichlet’s convolution, we have

g(n) =
∑
d|n

f (d) ⇐⇒ f (n) =
∑
d|n

g(d)µ
(n

d

)
for all Z+.

Lemma
For every p ∈ P and α ∈ N, one has

φ(pα) = pα − pα−1.

Proof.
The desired conclusion follows from the observation that

[ pα] \ {m ∈ [ pα] : (m, pα) = 1} = {p, 2p, . . . , pα−1p}.



Euler’s totient function
▶ Euler’s totient function is multiplicative and φ = µ ⋆ Id. Indeed, since

µ ⋆ 1 = δ, then we have∑
d|(m,n)

µ(d) =

{
1, if (m, n) = 1
0, otherwise

so that

φ(n) =
∑
m⩽n

(m,n)=1

1 =
∑
m⩽n

∑
d|(m,n)

µ(d) =
∑
d|n

µ(d)
∑
m⩽n
d|m

1

=
∑
d|n

µ(d)
[n

d

]
=

∑
d|n

µ(d)
n
d
= (µ ⋆ 1)(n),

which proves that φ is multiplicative, as are both µ and 1.
▶ By the previous lemma, we have

φ (pα) = pα − pα−1 = pα

(
1 − 1

p

)
,

and by the multiplicativity we obtain

φ (n) = n
∏
p|n

p∈P

(
1 − 1

p

)
.

We first deduce that φ is multiplicative by Theorem 4.10. Furthermore, if pα

is a prime power, then φ (pα) counts the number of integers m ⩽ pα such
that p ∤ m, and hence φ (pα) is equal to pα minus the number of multiples of
p less than pα, so that by Proposition 1.11 (v) we get

φ (pα) = pα −
[

pα

p

]
= pα − pα−1 = pα

(
1 − 1

p

)
which gives using Lemma 4.5

φ(n) = n
∏
p|n

(
1 − 1

p

)



Further properties of multiplicative functions
Theorem
If both g and f ⋆ g are multiplicative, then f is also multiplicative.

Proof.
We shall assume that f is not multiplicative and deduce that h = f ∗ g is also
not multiplicative.
▶ Since f is not multiplicative, there exist positive integers m, n ∈ Z+

with (m, n) = 1 such that

f (mn) ̸= f (m)f (n).

We choose m, n ∈ Z+ for which the product mn is as small as possible.
▶ If mn = 1, then f (1) ̸= f (1)f (1) so f (1) ̸= 1. Since

h(1) = f (1)g(1) ̸= 1,

this shows that h is not multiplicative.
▶ If mn > 1, then we have

f (ab) = f (a)f (b)

for all a, b ∈ Z+ with (a, b) = 1 and ab < mn.



Proof

▶ Except that in the sum defining h(mn), we separate the term
corresponding to a = m and b = n. We then have

h(mn) =
∑

a|m,b|n
ab<mn

f (ab)g
(

mn
ab

)
+ f (mn)g(1)

=
∑

a|m,b|n
ab<mn

f (a)f (b)g
(

m
a

)
g
(

n
b

)
+ f (mn)

=

(∑
a|m

f (a)g
(

m
a

))(∑
b|n

f (b)g
(

n
b

))
− f (m)f (n) + f (mn)

= h(m)h(n)− f (m)f (n) + f (mn).

▶ Since f (mn) ̸= f (m)f (n), this shows that h(mn) ̸= h(m)h(n), so h is not
multiplicative. This contradiction completes the proof.



Further properties of multiplicative functions
Theorem
If g is multiplicative, then so is g−1, its Dirichlet inverse. In particular, the
set of all multiplicative functions forms a multiplicative group with
multiplication defined by the Dirichlet convolution.

Proof.
This follows from the previous theorem since both g and g ⋆ g−1 = δ are
multiplicative. Hence g−1 is also multiplicative.

Theorem
If f is multiplicative, then we have∑

d|n

µ(d)f (d) =
∏
p|n

(1 − f (p)).

Proof.
Let g(n) :=

∑
d|n µ(d)f (d). This function is multiplicative, so to determine

g(n) it suffices to compute g(pα). We have

g(pα) =
∑
d|pα

µ(d)f (d) = f (1)− µ(p)f (p) = 1 − f (p).



Multiplicative functions at infinity
Theorem
Let f be a multiplicative function. If

lim
pk→∞

f (pk) = 0,

as pk runs through the sequence of all prime powers, then

lim
n→∞

f (n) = 0.

Proof.
▶ Since

lim
pk→∞

f (pk) = 0,

it follows that there exist only finitely many prime powers pk such that
| f (pk)| ≥ 1.

▶ We can define
A =

∏
pk:| f (pk)|≥1

| f (pk)|.

▶ Then A ≥ 1.



Proof
▶ Fix ε ∈ (0, 1) and choose a sufficiently large integer N ∈ Z+ such that

for every pk > N we have

| f (pk)| < ε

A
,

▶ If n =
∏

p∈P pvp(n) then

f (n) =
∏
p∈P

f (pvp(n)) =
∏
p∈P

pk≤N

f (pvp(n))
∏
p∈P

pk>N

f (pvp(n)).

▶ If n ∈ Z+ is sufficiently large then there is at least one factor in the
second product and consequently∏

p∈P
pk>N

| f (pvp(n))| < ε

A
.

▶ On the other hand, the first factor is at most A and we conclude that

| f (n)| ≤ A · ε
A

= ε.

This completes the proof.



Estimates for the divisors function
Theorem
For every ε > 0, there exists a constant Cε ∈ R+ such that

τ(n) ≤ Cεnε

Proof.
▶ Let ε > 0. The function f (n) = τ(n)

nε is multiplicative.
▶ In view of the previous theorem, it suffices to prove that

lim
pk→∞

f (pk) = 0

for every prime number p ∈ P.
▶ Since τ(pk) = k + 1, we observe that

f (pk) =
τ(pk)

pkε =
k + 1
pkε/2

1
pkε/2 .

▶ Since k+1
pkε/2 is bounded, the desired conclusion follows.



Estimates for the Euler totient function
Theorem
For every ε > 0, there exists a constant Cε ∈ R+ such that

Cεn1−ε ≤ φ(n) < n.

Proof.
The upper bound is clear. For the lower bound, we will proceed similarly to
the previous theorem.

▶ Let ε > 0. The function f (n) = n1−ε

φ(n) is multiplicative.
▶ It suffices to prove that

lim
pk→∞

f (pk) = 0

for every prime number p ∈ P.
▶ Since φ(pk) = pk − pk−1 and p

p−1 ≤ 2 for every p ∈ P, we obtain

pk(1−ε)

φ(pk)
=

pk(1−ε)

pk − pk−1 =
p

p − 1
pk(1−ε)

pk ≤ 2
pεk .

▶ The last term tends to 0 as pk → ∞, and the theorem follows.



von Mangoldt function
The von Mangoldt function is an example of a function that is neither
multiplicative nor additive.

Lemma
For every n ∈ Z+ we have

(Λ ⋆ 1)(n) =
∑
d|n

Λ(d) = log n.

Proof.
▶ The theorem is true if n = 1 since both sides are 0. Therefore, assume

that n > 1 and write n =
∏r

i=1 pαi
i . Then

log n =

r∑
i=1

αi log pi.

▶ The only nonzero terms in the sum
∑

d|n Λ(d) come from those divisors
d of the form pm

k for m ∈ [ak] and k ∈ [r]. Hence, we have

∑
d|n

Λ(d) =
r∑

i=1

ai∑
m=1

Λ(pm
i ) =

r∑
i=1

ai∑
m=1

log pi =

r∑
i=1

ai log pi = log n.



Properties of the von Mangoldt function
Theorem
If n ≥ 2, we have

Λ(n) =
∑
d|n

µ(d) log
n
d
= −

∑
d|n

µ(d) log d.

Proof.
▶ We know that (Λ ⋆ 1)(n) =

∑
d|n Λ(d) = log n. So inverting this

formula by using the Möbius inversion formula, we obtain

Λ(n) =
∑
d|n

µ(d) log
n
d
= log n

∑
d|n

µ(d)−
∑
d|n

µ(d) log d,

which simplifies to

Λ(n) = δ(n) log n −
∑
d|n

µ(d) log d.

▶ Since δ(n) log n = 0 for all n ∈ Z+, the proof is complete.



Derivation
Recall that a derivation on a ring K is an additive homomorphism
D : K → K such that

D(xy) = D(x)y + xD(y) for all x, y ∈ K.

Theorem
Let L(n) = log n for all n ∈ Z+. Pointwise multiplication by L(n) is a
derivation on the ring of arithmetic functions A.

Proof.
▶ If d | n, then L(n) = L(d) + L

( n
d

)
. We must prove that

L · ( f ⋆ g) = (L · f ) ⋆ g + f ⋆ (L · g) for all f , g ∈ A.

▶ We have

L · ( f ⋆ g)(n) =
∑
d|n

L(n)f (d)g
(n

d

)
=
∑
d|n

(L · f )(d)g
(n

d

)
+
∑
d|n

f (d)(L · g)
(n

d

)
.

This implies the desired result.



The Selberg identity
Theorem
For n ∈ Z+ we have

Λ(n) log n +
∑
d|n

Λ(d)Λ
(

n
d

)
=
∑
d|n

µ(d) log
(

n
d

)2

.

Equivalently, we have L · Λ + Λ ⋆ Λ = µ ⋆ L2.

Proof.
▶ Observe that Λ ⋆ 1 = L.
▶ Thus by the previous theorem we have

L2 = L · (Λ ⋆ 1) = (L · Λ) ⋆ 1 + Λ ⋆ (L · 1).

▶ Since Λ ⋆ 1 = L, we obtain

L2 = (L · Λ) ⋆ 1 + Λ ⋆ Λ ⋆ 1.

▶ Multiplying the last identity by 1−1 = µ, which follows from the
Möbius inversion formula, we obtain the desired bound.



Dirichlet series
In view of the multiplicative properties of certain arithmetic functions, we
use Dirichlet series rather than power series in analytic number theory.

Definition
Let f ∈ A be an arithmetic function. The formal Dirichlet series of a variable
s ∈ C associated to f is defined by

D(s, f ) :=
∞∑

n=1

f (n)
ns .

Here, we ignore convergence problems, and D(s, f ) is the complex number
equal to the sum when it converges.

Examples
▶ D(s, δ) = 1.
▶ Presumably, the most important example of a Dirichlet series is the

Riemann zeta function

D(s, 1) = ζ(s) :=
∞∑

n=1

1
ns .



Importance of the Dirichlet convolution
Proposition
Let f , g and h be three arithmetic functions. Then

h = f ⋆ g ⇐⇒ D(s, h) = D(s, f ) · D(s, g).

Proof.
We have

D(s, f ) · D(s, g) =
∞∑

k,m=1

f (k)g(m)

(km)s =
∞∑

n=1

1
ns

∑
d|n

f (d)g
(n

d

)
=

∞∑
n=1

( f ⋆ g)(n)
ns ,

which completes the proof.

Remark
The set D := (D,+, ·) of formal Dirichlet series with addition + and
multiplication · defined respectively by

D(s, f ) + D(s, g) = D(s, f + g), and D(s, f ) · D(s, g) = D(s, f ⋆ g),

forms a commutative ring with additive identity 0 and multiplicative identity
1, which is isomorphic to the ring of arithmetic functions A = (A,+, ⋆) via
the mapping A ∋ f 7→ D(s, f ) ∈ D.



Dirichlet series for multiplicative functions
Proposition
Let f be an arithmetic function. Then f is multiplicative if and only if

D(s, f ) =
∏
p∈P

(
1 +

∞∑
k=1

f
(
pk
)

psk

)
.

The above product is called the Euler product of D(s, f ).

Proof.
Expanding the product we obtain a formal sum of all products of the form

f (pa1
1 ) · · · f (par

r )

(pa1
1 · · · par

r )s ,

where p1, . . . , pr are distinct prime numbers, a1, . . . , ar ∈ Z+, and r ∈ N.
▶ By multiplicativity, the numerator can be written as f (pa1

1 · · · par
r ).

▶ The Fundamental Theorem of Arithmetic implies that the products
pa1

1 · · · par
r are in one-to-one correspondence with all natural numbers.

This gives a formal proof of the desired identity.



Examples
▶ By the previous proposition ζ(s) =

∑∞
n=1

1
ns =

∏
p∈P
(
1− 1

ps

)−1
, hence

1
ζ(s)

=
∏
p∈P

(
1 − 1

ps

)
=

∞∑
n=1

µ(n)
ns ,

which implies µ ⋆ 1 = δ.
▶ Taking logarithm we obtain

log ζ(s) =
∑
p∈P

log

(
1 − 1

ps

)−1

=
∑
p∈P

∞∑
k=1

1
kpks

▶ By formal differentiation, we have

−ζ ′(s)
ζ(s)

=
∑
p∈P

∞∑
k=1

log p
pks =

∞∑
n=1

Λ(n)
ns .

▶ On the other hand, we have

−ζ ′(s) =
∞∑

n=1

log n
ns .

▶ Thus Λ = µ ⋆ log and consequently Λ ⋆ 1 = log.


