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Arithmetic functions

Definition
An arithmetic function is a map f : Z;, — C, i.e., a sequence of complex
numbers, although this viewpoint is not very useful.

Examples of arithmetic functions

» The constant 1 and the identity Id functions are defined respectively by
1(n) =1 and Id(n):=n forall neZ,.
» The Dirac delta function d,, is defined as follows

Sn(n) = {1 ifn=m,

0 otherwise.

We shall abbreviate 6; to 6.

» The divisor function 7(n) is the number of positive divisors of n € Z,

T(n)::#{d€Z+:d|n}:21.

din

Some authors also use the notation d(n) for the divisor function.



Examples of arithmetic functions

» More generally, the sum of powers of divisors is defined by

ox(n) = de, where ke N.
d

Observe that 7(n) = oo(n), and we abbreviate o, to o.

» The Euler totient function ¢ is defined by
p(n) == #{m € [n] : (n,m) = 1} = > 5((n,m)).
mée|n]

» The function w is defined as follows: w(1) = 0 and w(n) counts the
number of distinct prime factors of n for all n > 2.

» The function 2 is defined as follows: (1) = 0 and Q(n) counts the
number of prime factors of n with multiplicities for all n > 2.

» The Liouville function ) is defined as follows

An) = (—=1)%0,



Examples of arithmetic functions

» The Mobius function p(n) is defined as follows

1 ifn =1,
p(n) :== < (=1)k if nis the product of k distinct primes,
0 if n is divisible by the square of a prime.

» The von Mangoldt function A(r) is defined as follows

logp if n = p*is a prime power,
A(n) = i
0 otherwise.

» Clearly, sums and products of arithmetic functions are still arithmetic
functions.

(f+8)(n):=f(n) +g(n) and (f-g)(n):=f(n)-gn).

» The other ways of multiplying arithmetic functions, such as Dirichlet
convolution, will be discussed shortly.



Rings
Definition
A ring is defined as a set K := (K, +, -) equipped with two binary
operations, commonly denoted as addition 4, and multiplication -, such that
(i) (K,+) is an abelian group, meaning that:
> There exists an additive identity 0 € K such thata + 0 = 0 + a = a for

alla € K.
» For every a € K, there exists an additive inverse —a € K such that
a+(—a)=0.

» Addition is commutative: a + b = b + a for all a,b € K.
» Addition is associative: (a +b) +c=a+ (b +c) forall a,b,c € K.
(ii) (K, -) is a monoid under multiplication, meaning that:
» Multiplication is associative: (a-b) -c=a- (b-c)forall a,b,c € K.
» There exists a multiplicative identity 1 € K such thata-1=1-a = a for
alla € K.

(iii) Multiplication is distributive with respect to addition, meaning that:
» Forall a, b, c € K, the following hold:

a-(b+c)y=a-b+a-c

(a+b)-c=a-c+b-c



Examples of rings

>

>

>

We say that a ring K is commutative, if it satisfies conditions (i)—(iii)
and additionally
xy=yx forall x,ye€K.

The sets Z, Q, R and C are examples of commutative rings. The set
M,(C) of 2 x 2 matrices with complex coefficients and the usual matrix
addition and multiplication is a noncommutative ring.

Let K and IL be rings with multiplicative identities 1k and 1,
respectively. A map f : K — L is called a ring homomorphism if

fOty) =f()+f(y) and f(xy) =f(x)f (v) forall x,y € K, and f(1z) = 1s.

An element a in the ring K is called a unit or invertible element if there
exists an element x € K, (which in fact is unique), such that

ax =xa = 1.

Then x is called the inverse for a and is denoted by a~'.

The set K* of all units in K forms a multiplicative group, called the
group of units in the ring K.

A field is a commutative ring in which every nonzero element is a unit.
For example, the rational numbers Q, real numbers R, and complex
numbers C are fields. The integers Z form a ring but not a field, and the
only units in the ring of integers are +1.



Dirichlet convolutions

Definition
The Dirichlet convolution f x g is defined by

(fxg)m) = _f(d) ( )

d|n

where the sum is over all positive divisors d of n. Dirichlet convolution
occurs frequently in multiplicative problems in elementary number theory.
Theorem

The set A := (A, +, %) of all complex-valued arithmetic functions, with
addition + defined by pointwise sum and multiplication * defined by
Dirichlet convolution, is a commutative ring with additive identity 0 and

multiplicative identity §, which is the Dirac delta at 1. Furthermore, if
f(1) # 0O, then f is invertible.

Proof.
Let D(n) := {d € [n] : d | n} be the set of all positive divisors of n.

(Fxg)m) = > f@s (%) :%f(g)g<d>

d|n

since the mapping D(n) > d — n/d € D(n) is one-to-one.



Proof
> Now let f, g and h be three arithmetic functions and n € Z_ . Then
(=) = S = @n (5) = S s () n(5).
d\n dln c|d
and
(F (gxm)m) = D r@)gxh) (5) =D @) - glen ()
dln dln cl(n/d)
Setting e = cd in the last inner sum gives
(F(gxm)(m) =D Y fld)g (5)h (%) = () xW)(n)
eln dle

establishing the associativity.
> We also have

(0*f)( 26 ( ) (n).

din



Proof

» Finally, we prove the invertibility by constructing inductively the

inverse g of an arithmetic function f satisfying f(1) # 0. The function g
is the inverse of f if and only if (f x g)(1) = 1 and (f x g)(n) = O for
all n > 1. This is equivalent to

f(De() =1,
San8d)f (5) =0 for n>2.

Since (1) # 0, we have g(1) = f(1)~! by the first equation. Now let
n > 1 and assume that we have proved that there exist unique values
g(1),...,g(n — 1) satisfying the above equations. Since f(1) # 0, the
second equation above is equivalent to

1 n
800 =~ dzlnjgw)f ().
d#n

which determines g(n) in a unique way by the induction hypothesis,
and this definition of g(n) shows that the equations above are satisfied,
which completes the proof. O



Multiplicative functions

Definition
Letf : Z4 — C be an arithmetic function.

» The function f is said to be multiplicative if f(1) # 0 and if, for all
positive integers m, n € Z, such that (m,n) = 1, we have

f(mn) = f(m)f (n).

» The function f is completely multiplicative if f(1) # 0 and if the
condition

f(mn) = f(m)f (n)
holds for all positive integers m and n.

» The function f is strongly multiplicative if f is multiplicative and if
f(p™) =f(p) for all prime powers p~.

Remark

The condition f(1) # 0 is a convention to exclude the zero function from the
set of multiplicative functions. Furthermore, it is easily seen that if f and g
are multiplicative, then so are fg and f /g with g # 0 for the quotient.



Additive functions

Letf : Z4+ — C be an arithmetic function.

» The function f is said to be additive if for all positive integers
m,n € Z4 such that (m,n) = 1, we have

f(mn) = f(m) +f(n).
» The function f is completely additive if the condition
f(mn) = f(m) +f(n)

holds for all positive integers m and n.

» The function f is strongly additive if f is multiplicative and if
F(p™) =f(p) for all prime powers p©.



Additive and multiplicative functions: simple criterium

Lemma (Exercise, prove it!)
Letf : Z — C be an arithmetic function.
(i) f is multiplicative if and only if f(1) = 1 and for all n = p{"' - - - p,
where the p; are distinct primes, we have

fm =117
Jelr]
(ii) f is additive if and only if f(1) = 0 and for all n = p{" - - - p2r, where

the p; are distinct primes, we have

f)=>"f@p")-

el

Theorem
Iff,g: Z+ — C are multiplicative, then so is f * g.



Proof

Let f and g be two multiplicative functions and let m, n € Z, be such
that (m,n) = 1.

Note that each divisor d of mn can be written uniquely in the form
d = ab witha | m,and b | n and (a,b) = 1.

Hence,
mn mn
(f xg)(mn) Zf (7) = ZZf(“b)g (E) .
d|mn alm bln
Since f and g are multiplicative and (a, b) = (m/a,n/b) = 1, we infer

that

(f*8)mn) = DD fl@r®)e (=) g (3) = Fr)m)(f *8)(n)

alm bln

as required. O



Examples

» The functions 1, Id, ¢ are completely multiplicative, whereas log and €2
are strongly additive and consequently the function ) is completely
multiplicative.

» SinceTt=1%x1,0 =1xIdand o} = 1 Id* and both 1 and Id are
completely multiplicative, so are d, o and o.

> It is easily seen that, for all m,n € Z_, we have

w(mn) = w(m) + w(n) — w(m,n),

since in the sum w(m) + w(n), the prime factors of (m, n) have been
counted twice. This implies the additivity of w.

» The Mobius function u(n) is multiplicative. Indeed, (1) = 1 and for
all prime powers p®, we also have

o -1, ifa=1,
M(P)—{

0, otherwise.
So that, if n = p{"'p5? - - - p& where the p; are distinct primes, we have

-1, far=-=a =1,

0, otherwise.

/A(P?l)mu(pf")—{

Hence p(p(™") - - - u(ps) = p(n) as desired.



Properties of Mobius function

» We intend to prove the following identity 1 = 6, i.e.
1, ifn=1
% 1 ) 3
(1 dz ud {o, ifn>1.

» Now since i and 1 are multiplicative, so is the function p x 1 by the
previous theorem and hence (1 * 1)(1) = 1 = §(1) is true forn = 1.

> Besides, it is sufficient to prove p x 1 = § for prime powers by the
previous lemma, which is easy to check. Indeed,

(L*1)(p%) Zu D) +pulp)=1-1=0=0(p")

as asserted.

» Using the identity u x 1 = §, we deduce

g=f*1 <= grpu=fx1lxp)=f

This relation is called the Mobius inversion formula.



Mobius inversion formula
The Mobius inversion formula is a key part of the estimates of average
orders of certain multiplicative functions.

Theorem (M&bius inversion formula)
Let f and g be two arithmetic functions. Then we have

g=fr1 <= [f=gxp
Equivalently, by expanding Dirichlet’s convolution, we have
n
gn) =Y fd) = ) = g@u(5) forall Zy.
d|n d\n
Lemma
For everyp € Pand o € N, one has
p(p™) =p* —p*".
Proof.

The desired conclusion follows from the observation that

[p*I\{m € [p*]: (m,p*) =1} ={p,2p,....p* 'p}. O



Euler’s totient function

» Euler’s totient function is multiplicative and ¢ = p % Id. Indeed, since
u*1 =4, then we have

1, if(myn) =1
d =
Z uid) {0, otherwise

d|(m,n)
so that
D= uwd =) udd 1
m<n m<n d|(m,n) d|n m<n
(mm =1 i
=Y @) [5] = S n@)% = (ux (n),
d|n d|n

which proves that ¢ is multiplicative, as are both p and 1.
» By the previous lemma, we have

a a a— a 1
e(p®)=p*—p* ' =p (171;),

and by the multiplicativity we obtain



Further properties of multiplicative functions

Theorem
If both g and f x g are multiplicative, then f is also multiplicative.

Proof.
We shall assume that f is not multiplicative and deduce that 7 = f * g is also
not multiplicative.

» Since f is not multiplicative, there exist positive integers m,n € Z
with (m,n) = 1 such that

f(mn) # f(m)f (n).

We choose m, n € Z for which the product mn is as small as possible.

» If mn = 1,then f(1) # f(1)f(1) sof(1) # 1. Since
h(1) =f(1e(1) # 1,

this shows that 4 is not multiplicative.
» If mn > 1, then we have

flab) = f(a)f ()

forall a,b € Z, with (a,b) = 1 and ab < mn.



Proof

» Except that in the sum defining h(mn), we separate the term
corresponding to a = m and b = n. We then have

= Y flab)g ( )+f<mn> (1)

alm,b|n
ab<mn

] a%,}nﬂ@ﬂwg(’j)g(z) o)
a|m ( >)< ( )) —f () () +1 (mn)

ab<mn
= h(m)h(n) — f(m) ()+f(mn)

» Since f(mn) # f(m)f (n), this shows that h(mn) # h(m)h(n), so h is not
multiplicative. This contradiction completes the proof. OJ



Further properties of multiplicative functions

Theorem

If g is multiplicative, then so is g~ ', its Dirichlet inverse. In particular, the
set of all multiplicative functions forms a multiplicative group with
multiplication defined by the Dirichlet convolution.

1

Proof.
This follows from the previous theorem since both g and g x g~! = § are
multiplicative. Hence g~ is also multiplicative. O

Theorem
If f is multiplicative, then we have

> @@ =T 1)

d\n pln

Proof.
Let g(n) := >, 1(d)f (d). This function is multiplicative, so to determine
g(n) it suffices to compute g(p®). We have

g(p®) = > _p(d)f(d) =f(1) — p(p)f(p) =1 —f(p). O

d|p~



Multiplicative functions at infinity

Theorem
Let f be a multiplicative function. If
lim f(p) =0,
pk—oo

as p* runs through the sequence of all prime powers, then

lim f(n) =
Proof.
» Since
Jim f(p") =

it follows that there exist only finitely many prime powers p* such that
F(P) = 1.
> We can define
A= II 176H.

PRl f(Ph)|>1
» ThenA > 1.



Proof

» Fix € € (0, 1) and choose a sufficiently large integer N € Z such that
for every p* > N we have
€

A0 < 5

> Ifn= Hpeﬂ,,p"ﬁ(”) then

o) =T Lree ™) = TLr@=™) 1T £,

peP peP peP
PN PI>N

> If n € Z, is sufficiently large then there is at least one factor in the
second product and consequently

vp (1) =
Hlf(p )I<A-

peP
PF>N
» On the other hand, the first factor is at most A and we conclude that

fl <A< =

This completes the proof. O



Estimates for the divisors function

Theorem
For every € > 0, there exists a constant C. € R such that

7(n) < Cen®

Proof.
» Lete > 0. The function f(n) = Trff) is multiplicative.

» In view of the previous theorem, it suffices to prove that

lim f (pk)

pk—o0

for every prime number p € P.
» Since 7(p*) = k + 1, we observe that

« T(p)_k—|—1 1
f(P) - pks/Z pks/Z'

> Since kkj/lz is bounded, the desired conclusion follows.



Estimates for the Euler totient function

Theorem
For every € > 0, there exists a constant C. € R such that

C.n'"¢ < p(n) <n.

Proof.
The upper bound is clear. For the lower bound, we will proceed similarly to
the previous theorem.

» Lete > 0. The function f(n) = :‘01(;;) is multiplicative.

» It suffices to prove that
lim f(p*) =0
pF—o0
for every prime number p € P.

» Since (p*) = p* — p*~! and 527 < 2 forevery p € P, we obtain

pk(lfs) _ pk(lfa) _ p pk(lfe) _ i
()  p-p~t p—1 pt T pE

» The last term tends to O as p" — 00, and the theorem follows. O



von Mangoldt function
The von Mangoldt function is an example of a function that is neither
multiplicative nor additive.

Lemma
For every n € Z we have

(Ax1)( Z A(d) = logn.
Proof. din

» The theorem is true if n = 1 since both sides are 0. Therefore, assume
that n > 1 and write n = [[/_, p{*. Then

logn = Z a;log p;.
i=1

> The only nonzero terms in the sum 3, A(d) come from those divisors
d of the form p}’ for m € [a;] and k € [r]. Hence, we have

S =3 D AG =D lowpi =Y alogpi=logn. [
i=1

d\n i=1 m=1 i=1 m=1



Properties of the von Mangoldt function

Theorem
Ifn > 2, we have

A(n):Zu logf: Zp ) logd.

dln dln

Proof.

> We know that (A 1)(n) = >_,, A(d) = logn. So inverting this
formula by using the Mobius inversion formula, we obtain

Zu logf lognZu Z;L )logd,

din din dln

which simplifies to

A(n) = loganu )logd.

din

» Since §(n) logn = 0 for all n € Z, the proof is complete.



Derivation

Recall that a derivation on a ring K is an additive homomorphism
D : K — K such that

D(xy) = D(x)y +xD(y) forall x,yecK.

Theorem
Let L(n) = logn for all n € Z.. Pointwise multiplication by L(n) is a
derivation on the ring of arithmetic functions A.

Proof.
> Ifd | n, then L(n) = L(d) + L (%). We must prove that

L-(fxg)=(L-f)xg+f~(L-g) forall f gecA.

» We have

(Fra)m =3 Ler(@e ()

d|n
=S w-n@e (5) + S r@-g (5).
d|n d|n

This implies the desired result.



The Selberg identity

Theorem
Forn € Z4 we have

n)logn+dZ|nA(d) ( ) %n:u log( )2.

Equivalently, we have L - A + A x A = jx L.

Proof.
» Observethat Ax1 =1L

» Thus by the previous theorem we have
L*=L-(Ax1)=(L-A)*1+Ax(L-1).
» Since A x1 = L, we obtain
LP=(L-A)x1+AxAx1.

» Multiplying the last identity by 1~! = 1, which follows from the
Mobius inversion formula, we obtain the desired bound.



Dirichlet series
In view of the multiplicative properties of certain arithmetic functions, we
use Dirichlet series rather than power series in analytic number theory.

Definition

Letf € A be an arithmetic function. The formal Dirichlet series of a variable

s € C associated to f is defined by

D(s,f) :== Zf(’:)
n=1

n

Here, we ignore convergence problems, and D(s, f) is the complex number

equal to the sum when it converges.
Examples
> D(s,0) = 1.

» Presumably, the most important example of a Dirichlet series is the
Riemann zeta function



Importance of the Dirichlet convolution

Proposition
Let f, g and h be three arithmetic functions. Then

h=fxg <= D(s,h) =D(s,f) D(s,g).

Proof.
We have
N flgm) o~ 1 ny _ -~ (F*g) ()
D) Dls8) = 3 = = 2 dzln:f(d)g( %) =2
which completes the proof. O
Remark

The set D := (D, +, -) of formal Dirichlet series with addition 4 and
multiplication - defined respectively by

D(S,f)+D(S,g):D(S,f+g), and D(s,f)-D(s,g):D(s,f*g),

forms a commutative ring with additive identity 0 and multiplicative identity
1, which is isomorphic to the ring of arithmetic functions A = (A, +, x) via
the mapping A > f — D(s,f) € D.



Dirichlet series for multiplicative functions

Proposition
Let f be an arithmetic function. Then f is multiplicative if and only if

pis.f) =] (1 +§:f1§fkk)> .

peEP
The above product is called the Euler product of D(s,f).

Proof.
Expanding the product we obtain a formal sum of all products of the form
[y fp?)

ARt

)

where py, ..., p, are distinct prime numbers, a, ...,a, € Z;,and r € N.
» By multiplicativity, the numerator can be written as f (p{' - - - pr).

» The Fundamental Theorem of Arithmetic implies that the products
py' - - pér are in one-to-one correspondence with all natural numbers.

This gives a formal proof of the desired identity.



Examples

> By the previous proposition ¢(s) = 322 & = [Lep (1 - ) >

(B

peP n

which implies g * 1 = 4.
» Taking logarithm we obtain

—1 e’}
log ¢ (s) Zlog(l—) = Z lkx

peP pEP k=1

» By formal differentiation, we have

lo > An
—yy oy A

pEP k=1 n=1

» On the other hand, we have

=3 B

nS

n=1

» Thus A = p % log and consequently A x 1 = log.



