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Monotonic, unimodal and integrable functions

Definition
A function f : I — R is unimodal on an interval I = [a, b] if there exists a

number 7y € [ such that f(¢) is increasing for 7 < fy and decreasing for ¢ > fo.

For example, f (1) = log" /1 is unimodal on the interval [1, o0) with 7y = e*.

Theorem
» Leta,b € Zwitha < b, and let f : [a,b] — R be monotonic. Then

b
min{f(a),f(b)} < Z f(n / f(0)dt < max{f(a),f(b)}.

» Letx,y € Rwithy < |x|, and let f : [y, x] — R be monotonic. Then

/fdt

» Letf:[l,00) = Ry be unimodal. Then

< max{f(y),f(x)}.

y<n<x

F(x) = /f 1)dt + O(1

n<x



Proof

» Iff : [a,b] — R is increasing, then

/f 1)dt = Z/kﬂf dt < Zf

k=a+1

and also
k41 b—1
/f ()di = Z/ sz 30
» Hence, we conclude that
b b b
+ [ o< 30 <)+ [ sioar
a k:Ll a
> Iff : [a,b] — R is decreasing, then

/f dt<Zf <fla /f

» Combining those two inequalities we obtain the desired conclusion.



Proof

» Letf : [y,x] — Ry beincreasing. Leta = |y] + l and b = |x]. We
have y < a < b < xand

> fln) = /f )dt + f (b /f( )dt + f (x)

y<n<x a<n<b

» Since f(a) > f f()dt and f(x) > fb t)dt, it follows that

/f Ydt +f(a

/f 1)dt — /f Ydt + f(a /f
2/ftdz—

v<n<x

» Therefore,

/fdt

<f(x)

y<n<x



Proof

> Iff : [y,x] — Ry be decreasing, we obtain a similar conclusion

> s [ st

y<n<x

<f),

which proves the second inequality.
» Finally, if the functionf : [1,00) — R is unimodal, then f(z) is
bounded and the conclusion follows from the second inequality. [

Example: a simple form of Stirling’s formula
For x > 2, we have

Zlogn =xlogx —x+ 1+ O(logx).

n<x

» Indeed, the function f(r) = logt is increasing on [1, x]. By the previous
theorem, we have

/ log tdt < Zlogn §/ log tdt + log x,

1 n<x 1

which gives the desired claim, since || ]X logtdt = xlogx — x + 1.



Stirling’s formula

Theorem
Forn € N, we have

nl =2t 2e e

where r, satisfies the double inequality

ntrl ™S Ton

In other words we have

V2 2e e m < pl < \2rn 1 2e e



Proof

> Let
n—1
S, =log(n!) = > log(p + 1)
p=l1
and write
log(p +1) =A, + by, — ¢,
where

p+1
Ap / log x dx,

P

by = [log(p + 1) — logpl/2,

p+1
5,,:/ logxdx — [log(p + 1) + logp]/2.
P

» In other words, log(p + 1) is regarded as the area of a rectangle with
base (p,p + 1) and height log(p + 1) partitioned into a curvilinear area
Ap, atriangle by, and a small sliver €, suggested by the geometry of the

curve y = log x.



Proof

» Then

n—1 n—1

n
1
S, = Z(AP +b,—¢p) = /1 log x dx + Elogn - Zap.

p=1 p=1
> Since [logxdx = xlogx — x we can write

n—1

Sy = (n—|—1/2)logn—n—|—1—zzep7
p=1

where
p+1
& = / logxdx — [log(p + 1) + logp]/2
P
=(p+1)log(p+1) —plogp — 1 — [log(p + 1) + log p] /2

2p+1 p+1
= log< )—1.




Proof

» Using the well known series expansions
14+x = x
log () =2
AT T Akt

valid for |x| < 1, and setting x = (2p + 1) ™!, so that
(14+x)/(1 —x)=(p+1)/p, we find that

2p+1 p+1 = 1
= log (2=) — 1= .
O T ; (2k+3)(2p + 1)2+2

» We can therefore bound ¢, above:

o 1 - 1 _i(l_ 1 )
P31 & (2p )% 12\p pr 1)




Proof

» Similarly, we bound ¢, below:

oo

1 1 1 1

>
7 32p 12 = Bp+ 1 32p+ 12

1
T 3(2pr1)?

1 1
= ﬁ(p+1/12 717—1—1—&-1/12)'

» Now define

o0 o
B = E Ep, Iy = E Eps
p=1 p=n

where from the lower and upper bound for €, we have

1/13 < B < 1/12.



» Then we can write

n—1
S,,z(n—!—l/Z)logn—n—i—l—Zap
p=1
=m+1/2)logn—n+1—B+ry,

or, setting C = '8, as

CnnJrl/Z —n r,,

where r, satisfies

1/(12n4 1) < r, < 1/(12n).

11/12 12/13

» The constant C, lies between e and e , may be shown to have
the value v/27. Indeed, by the Wallis formula we have

T ) (2”71') ] C222n 2n+1 —2n

1m 1m =
2 oo (2n)! I oo C(2n)2+1/2¢=20/2n

e

» Thus C = /27 and this completes the proof.



Partial summation

Theorem
» Letf,g: Zy — C be arithmetic functions. Let F(x) :== >, ., - f(n).
Then for any a,b € N with a < b, we have o

b b—1
> f(n)g(n) = F(b)g(b) — Fla)g(a+ 1) = D> F(n)(g(n+ 1) - g(n)).
n=a+1 n=a+1

> Letx,y € Ry with |y| < |x], and let g € C'([y,x]). Then

S Fngtn) = Fgts) — FO)e0) — [ R0
y<n<x y
» In particular, if x > 2 and g € C'([1,x]), then

S mgtn) = et - [ “F()g (i

n<x



Proof
» Since f(n) = F(n) — F(n — 1), we have

and since F(t) = F(n) forn <t < n+ 1, it follows that

n+1
Fln)(g(n+ 1) — g(n)) = / F(o)g'(1)dr.



Proof

» Leta=|y|,b=|x|,sincea<y<a+1<b<x<b+1,wehave

b
D fmsn) = > f(n)g(n)

y<n<x n=a+1

= Fb)g(b) — Fla)glat+ 1) — S F(n)(g(n+ 1) — g(n)
n=a+1
b—1 n+1

= F(0)g(b) - FO)gla+ 1) - / F(1)g (1)t



Partial summation = Abel summation formula
Let (a)rez, (Pr)rez € Cand m,n € Z withm < n. If 5 := Z;‘:m a;, then

n—1

Z axbr = Spby — Ambyi — Z (D1 — i) sk

k=m+1 k=m+1

» Observe that a; = s, — sx—1, hence

n n
Z axby = Z by (sk — Sk—1) Z bisg — Zbk+lsk;
k=m+1 k=m+1 k=m+1

which implies the asserted result, since s,, = a,,.
» One can deduce from this equality the following useful bound

n
> abi| < @max{lbuiil,1bal} + Vinn) max |sl,
k=m+1 SEsH

where Vi, . 1= > j_ m+1 |brr1 — bl
» If (by)kez C Ry is a monotone, then

‘ Z akbk‘ < 2max{byi1, by } max |sk|
k=m+1



Euler—Mascheroni constant constant

Since
En *1 >/n7t =logn
} = . t g ’
k=1

the sequence

1 1
u,,+1—u,,:—log<l+> <0
n-—+ n

thus (u,)nez. converges.

Definition
We call the Euler-Mascheroni constant, or more simply the Euler constant,
the real number v defined by

n—oo
k=1

n 1
v = lim <Z i logn> ~ 0.577215664901532 . . ..

The problem of the irrationality of + still remains open!



Integral representation of

Theorem
Letn € Z, then

1
Z% logn 4~ 4 R(n)

with 0 < R(n) < 1.
Proof.
> We use partial summation with f(r) = 1 and g(r) = 1 which gives

Speaate [ (X e

1<k<t

:1+/1 t_tz{ }dtzlognJr(l—/loo{t?dt)Jr/noo{ttz}dt

> Thus v = lim, o0 (D f_; + —logn) =1— [~ %dt, and

/ {t}dt</ —dt ’11 O




Absolute convergence of Dirichlet series

Proposition
For each Dirichlet series D(s,f), there exists o, € R U {£o00}, called the
abscissa of absolute convergence, such that

» D(s,f) converges absolutely in the half-plane o > o,;

» D(s,f) does not converge absolutely in the half-plane o < o,,.

Remarks

» In particular, the series D(s, f) defines an analytic function in the
halfplane ¢ > o,. By abuse of notation, this function will be still
denoted by D(s, f).

» If | f(n)| < logn, then the series D(s, f) is absolutely convergent in the
half-plane o > 1, and hence o, < 1.

» At o = o0, the series may or may not converge absolutely. For instance,
¢(s) converges absolutely in the half-plane o > o, = 1, but does not
converge on the line o = 1.

» On the other hand, the Dirichlet series associated to the function f(n) =
1/(log(en))? has also o, = 1 for the abscissa of absolute convergence,
but converges absolutely at o = 1.



Proof
» LetS:= {s € C: D(s,f) converges absolutely}.
> If S = &, then put 0, = 400. Otherwise define
o =inf{o:s=0+ite S}

» D(s,f) does not converge absolutely if o < o, by the definition of o,,.

> On the other hand, suppose that D(s, f) is absolutely convergent for
some sg = og + ity € C and let s = o + it be such that o > 0. Since

[ ||, 1w

ns - nS(] na —00 ~ nS(]

we infer that D(s, f) converges absolutely at any point s with o > 0.

» Now by the definition of o,, there exist points arbitrarily close to g, at
which D(s, f) converges absolutely, and therefore by above D(s, f)
converges absolutely at each point s such that o > o,. O

The partial sums 3 _, . f(n) and the Dirichlet series D(s, f) are strongly
related to each other. The next result shows that if we are able to estimate the
order of magnitude of > _, . f(n), then a region of absolute convergence
of D(s,f) is known.



Simple criterium for absolute convergence

Proposition
Let D(s,f) = >~ f(n)n™* be a Dirichlet series. Assume that

|f(n)| < Mn®  forall ne€Zy,

for some o« > 0 and M > 0 independent of n.
» Then D(s,f) converges absolutely in the half-plane o > o + 1.

Proof.

Indeed, observe that

D5, ) = S [ fmn = <MY 0~ < o,
n=1

n=1

whenever o > « + 1, as desired.



Dirichlet series for products

Proposition

Let f, g be two arithmetic functions. The the associated Dirichlet series
D(s,f) and D(s, g) are absolutely convergent at a point o, then D(s,f x g)

converges absolutely at sy and we have D(so,f x g) = D(so,f)D(s0, &)-
Proof.
> We have
I g
(SOaf S(), Z f * g)

where the rearrangement of the terms in the double sums is justified by
the absolute convergence of the two series D(s,f) and D(s, g) at s = 5.

()

proving the absolute convergence of D(sg,f * g).
This completes the proof. O

» Furthermore, we have

>

n=1

f(n)

nso

g(n)

fxg(n)

ns

(s

n=1




Dirichlet series for inverses

Corollary

Let f be an arithmetic function such that f(1) # 0. Let f~! be the
convolution inverse of the fuction f, i.e. f xf~' = 8. Then

1
D(s.f)

at every point s where D(s,f) and D(s,f~') converge absolutely.

D(S’fil) =

Example

» The Mobius function satisfies u~" = 1, hence for o > 1, we have

o~ aln) 1
s L

n=1

\_/

» In particular, we have

—u(n) 6 ) =1 7
Z—nz = since C(2)f2;f€

n=1 n=1



Computation of abscissa of the absolute convergence

Proposition
Let f be an arithmetic function.
() If| f(n)] < Mn® for some M € Ry and o > 0, then o, < o + 1.
(i) We have
04 < L :=limsup (1 + log|f(n)|) .

=00 logn
Proof.
» The first part follows from our criterium for absolute convergence.

> For the second part we may suppose that L < oo and let o > L. Fix
€ > 0sothat o — e > L + ¢. Then there exists a large N. € Z such
that, for all n > N., we have

!
1+M<L+E<U*€
logn

and hence, for all n > N., we obtain

fln

ns

- noflfs B 1

ne nlte’

» Hence D(s,f) is absolutely convergent in the half-plane o > L.



Quantitaive estimates

Proposition
Let D(s,f) = >~ f(n)n™* be a Dirichlet series. Assume that

‘Zf(n)‘gMyo‘ forall 0<x<y,

x<ngy

for some o« > 0 and M > 0 independent of x and y.
» Then D(s,f) converges in the half-plane o > c.

M |s|
< +1).
X7 \o—«

» Furthermore, we have in this half-plane
Ms| f(n)
oc—a’ ns

ID(s.f)] < and

x<n<y

Remark

» The latter statement ensures that D(s, f) converges uniformly in any
compact subset of the half plane o > a.



Proof

SetA(x) = ., f(n) and S(x,y) = A(y) — A(x). By partial
summation we have

LSt P,

ys us-i—l

x<ny

By hypothesis we have |S(x,y)/y*| < My®~7, so that S(x,y)/y* tends
to 0 as y — oo in the half-plane o > a.

Therefore if one of

D(s,f) = Zf:;l)’ or s/loo 251:1) du.

neN

converges, then so does the other, and the two quantities converge to the
same limit.

But since
M

= uo—ao+l ’

A(u)
us+1

we infer that the integral converges absolutely for o > «, and hence
D(s,f) is convergent in this half-plane.



Proof

» Therefore for all o > «, we obtain

=) _ [~ AW
Z‘/l P

and hence © M|
u N
Pl <Ml [ S =

oc—a

> Similarly

lzf(”)

x<nLy

< M *  du o M |s] {
~ yo'foc —|—M‘S| . uo'fa+1 ~ X« O — +

as required.



Conditional convergence of Dirichlet series

Proposition

For each Dirichlet series D(s,f), there exists 0. € RU {xo0}, called the
abscissa of convergence, such that D(s,f) converges in the half-plane

o > o, and does not converge in the half-plane o < o.. Furthermore,

o. <o, <o+ 1
Proof.

» Suppose first that D(s, f) converges at a point so = o + ifp and fix a
small real number € > 0. By Cauchy’s theorem, there exists x. > 1
such that, for all y > x > x., we have

Z[@

x<nLy

<e.

> Lets = o + it € Csuch that o > 0. Using the previous proposition
with s replaced by s — 59 and o = 0, we obtain

) (ls=sl
> ) <e (B2,

x<n<y
so that D(s, f) converges by Cauchy’s theorem.




Proof

Now we may proceed as before. Let S := {s € C: D(s,f) converges}.
If § = &, then we put 0, = +00. Otherwise define

oo :=inf{o:s=0+it € S}.

D(s,f) does not converge if ¢ < o, by the definition of o..

On the other hand, there exist points sy with o being arbitrarily close to
o. at which D(s, f) converges.

By above, D(s, f) converges at any point s such that ¢ > oy. Since o9
may be chosen as close to o, as we want, it follows that D(s, f)
converges at any point s such that o > o,.

The inequality o, < 0, < 0, + 1 remains to be shown.

The lower bound is obvious. For the upper bound, it suffices to show
that if D(so, f) converges for some s, then it converges absolutely for
all s such that o > o + 1. Now if D(s,f) converges at some point s,
then lim,,_, o f(n)n™*° = 0. Thus there exists a positive integer ny such
that, for all n > ng, we have | f(n)| < n?, hence D(s,f) is absolutely
convergent in the half-plane o > o + 1 as required. [



Dirichlet series are holomorphic

Theorem

A Dirichlet series D(s,f) = >_.= | f(n)n™* defines a holomorphic function of
the variable s in the half-plane o > o, in which D(s,f) can be differentiated
term by term so that, for all s = o + it such that ¢ > o, we have

o0 )k
okD(s,f) = Z logn fln ), for keZg.
n=1

Proof.

» We know that the partial sums of a Dirichlet series is a holomorphic
function of the variable s that converges uniformly on any compact
subset of the half-plane o > 0.

» Therefore, the limit D(s,f) defines a holomorphic function of the
variable s in this half-plane.

» Consequently, term-by-term differentiation is allowed, and since
n—S=e" log n’ then

on=s = (=D)*(logn)*n=,

and the desired formula follows. O



Dirichlet series are determined uniquely

Proposition

Let D(s,f) = >, f(n)n"* be a Dirichlet series with abscissa of
convergence o.. If D(s,f) = 0 for all s such that o > o, then f(n) = 0 for
all n € Z . In particular, if D(s,f) = D(s,f) for all s such that ¢ > o, then

f(n)=g(n) foralln € Z,.
Proof.

> Suppose the contrary and let k € Z be the smallest integer such that
f(k) #0. Then D(s,f) = >, f(n)n=* = 0 for all s such that ¢ > o.
Then we have

G(s) = k'D(s,f) = k' ZJ%”) =0.
n=k

» Therefore, for all s such that ¢ > o, we have

o6 =r+ > s (£) o

n=k+1

» Hence
0= lim G(o) =f(k) #0,

g — 00

which is impossible. OJ



Singularity on the axis of convergence

Theorem (Landau)
Iff(n) =2 0 foralln € Z, and D(s,f) = .-, f(n)n"* is a Dirichlet series
with abscissa of convergence o, € R, then D(s,f) has a singularity at s = o..

Proof.

» Without loss of generality, we may assume that o. = 0 and
|D(0,f)| < co. By the Taylor expansion of D(s, f) about a > 0 we have

(s —a)k > s—ak ad n
D(s.r) = 3 B (e, = 30 Bl 3o CD s/,

k=0 : k=0 n=1

which must converge at some s = b < 0. Hence

= ) logn
D 3) SECEUL LEIDIE

k=0

3

» Each term is nonnegative, so the order of summation may be changed
i f(n)
na
n=1

which does not converge, since b < 0 = o, giving a contradiction. []

[e'e]

Z logn i 7)

k=0 n=1




Series of multiplicative functions

Theorem
Let f be a multiplicative function satisfying

DD I < oo

peP k=1
Then the series ) ., -, f(n) is absolutely convergent and we have

oo

S =] <1 + if (p")> :

n=1 peP

Proof.

> Let us first notice that the inequality - 5 >~ | f (PY)| < oo implies
the convergence of the product

11 (1 +§:1 |f(p">|) < exp (ij If(pk)> < 0.

peP pEP k=1



Proof

Now let x > 2 be a real number and set

P = T] (1 +i|f@")|).

PG]PS,X

The convergence of the series >~ | f (p*) | enables us to rearrange
the terms when we expand P(x), hence

Px)= > |f()l,
gpf(n) <x
where gpf(1) = 1 and gpf(n) is the greatest prime factor of n > 2.
Since each integer n < x satisfies the condition gpf(n) < x, we have
> 1< PW)
1<n<x

Since P(x) has a finite limit as x — oo, the above inequality implies
that 3, - [ f(n)| < oo. The second part of the theorem follows from
the inequality

S - T (Hif(p"))‘ <M 1rm)l,
n=1 k=1

PEP< n>x

and the fact that the right-hand side tends to 0 as x — oo.



Multiplication of Dirichlet series

Theorem
Let f be a multiplicative function and let sy € C. Then the three following

assertions are equivalent.
(i) One has

oo
ZZ mk < 0.
cP k=1

(ii) The series D(s,f) is absolutely convergent in the half-plane o > oy.

I (37

peP

(iii) The product

is absolutely convergent in the half-plane o > 0. If one of these
conditions holds, then we have for all ¢ > o that

Dis.f)=]] <1+Zf(pk )

peEP k=1

In particular, if o, is the abscissa of absolute convergence of D(s,f),
then the last identity holds for all o > o,.



