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Monotonic, unimodal and integrable functions
Definition
A function f : I → R is unimodal on an interval I = [a, b] if there exists a
number t0 ∈ I such that f (t) is increasing for t ≤ t0 and decreasing for t ≥ t0.
For example, f (t) = logk t/t is unimodal on the interval [1,∞) with t0 = ek.

Theorem
▶ Let a, b ∈ Zwith a < b, and let f : [a, b] → R be monotonic. Then

min{f (a), f (b)} ≤
b∑

n=a

f (n)−
∫ b

a
f (t)dt ≤ max{f (a), f (b)}.

▶ Let x, y ∈ R with y < ⌊x⌋, and let f : [y, x] → R+ be monotonic. Then∣∣∣∣ ∑
y<n≤x

f (n)−
∫ x

y
f (t)dt

∣∣∣∣ ≤ max{f (y), f (x)}.

▶ Let f : [1,∞) → R+ be unimodal. Then

F(x) =
∑
n≤x

f (n) =
∫ x

1
f (t)dt + O(1).



Proof
▶ If f : [a, b] → R is increasing, then∫ b

a
f (t)dt =

b−1∑
k=a

∫ k+1

k
f (t)dt ≤

b∑
k=a+1

f (k),

and also ∫ b

a
f (t)dt =

b−1∑
k=a

∫ k+1

k
f (t)dt ≥

b−1∑
k=a

f (k),

▶ Hence, we conclude that

f (a) +
∫ b

a
f (t)dt ≤

b∑
k=a

f (k) ≤ f (b) +
∫ b

a
f (t)dt.

▶ If f : [a, b] → R is decreasing, then

f (b) +
∫ b

a
f (t)dt ≤

b∑
k=a

f (k) ≤ f (a) +
∫ b

a
f (t)dt.

▶ Combining those two inequalities we obtain the desired conclusion.



Proof
▶ Let f : [y, x] → R+ be increasing. Let a = ⌊y⌋+ 1 and b = ⌊x⌋. We

have y < a ≤ b ≤ x and

∑
y<n≤x

f (n) =
∑

a≤n≤b

f (n) ≤
∫ b

a
f (t)dt + f (b) ≤

∫ x

y
f (t)dt + f (x)

▶ Since f (a) ≥
∫ a

y f (t)dt and f (x) ≥
∫ x

b f (t)dt, it follows that

∑
y<n≤x

f (n) ≥
∫ b

a
f (t)dt + f (a)

≥
∫ x

y
f (t)dt −

∫ x

b
f (t)dt + f (a)−

∫ a

y
f (t)dt

≥
∫ x

y
f (t)dt − f (x)

▶ Therefore, ∣∣∣∣ ∑
y<n≤x

f (n)−
∫ y

x
f (t)dt

∣∣∣∣ ≤ f (x).



Proof
▶ If f : [y, x] → R+ be decreasing, we obtain a similar conclusion∣∣∣∣ ∑

y<n≤x

f (n)−
∫ y

x
f (t)dt

∣∣∣∣ ≤ f (y),

which proves the second inequality.
▶ Finally, if the function f : [1,∞) → R+ is unimodal, then f (t) is

bounded and the conclusion follows from the second inequality.

Example: a simple form of Stirling’s formula
For x ≥ 2, we have∑

n≤x

log n = x log x − x + 1 + O(log x).

▶ Indeed, the function f (t) = log t is increasing on [1, x]. By the previous
theorem, we have∫ x

1
log tdt ≤

∑
n≤x

log n ≤
∫ x

1
log tdt + log x,

which gives the desired claim, since
∫ x

1 log tdt = x log x − x + 1.



Stirling’s formula

Theorem
For n ∈ N, we have

n! =
√

2πnn+1/2e−nern ,

where rn satisfies the double inequality

1
12n + 1

< rn <
1

12n
.

In other words we have
√

2πnn+1/2e−ne
1

12n+1 < n! <
√

2πnn+1/2e−ne
1

12n .



Proof
▶ Let

Sn = log(n!) =
n−1∑
p=1

log(p + 1)

and write

log(p + 1) = Ap + bp − εp,

where

Ap =

∫ p+1

p
log x dx,

bp = [log(p + 1)− log p]/2,

εp =

∫ p+1

p
log x dx − [log(p + 1) + log p]/2.

▶ In other words, log(p + 1) is regarded as the area of a rectangle with
base (p, p + 1) and height log(p + 1) partitioned into a curvilinear area
Ap, a triangle bp, and a small sliver εp suggested by the geometry of the
curve y = log x.



Proof
▶ Then

Sn =

n−1∑
p=1

(Ap + bp − εp) =

∫ n

1
log x dx +

1
2
log n −

n−1∑
p=1

εp.

▶ Since
∫
log x dx = x log x − x we can write

Sn = (n + 1/2) log n − n + 1 −
n−1∑
p=1

εp,

where

εp =

∫ p+1

p
log x dx − [log(p + 1) + log p]/2

= (p + 1) log(p + 1)− p log p − 1 − [log(p + 1) + log p]/2

=
2p + 1

2
log
(p + 1

p

)
− 1.



Proof

▶ Using the well known series expansions

log
(1 + x

1 − x

)
= 2

∞∑
k=0

x2k+1

2k + 1

valid for |x| < 1, and setting x = (2p + 1)−1, so that
(1 + x)/(1 − x) = (p + 1)/p, we find that

εp =
2p + 1

2
log
(p + 1

p

)
− 1 =

∞∑
k=0

1
(2k + 3)(2p + 1)2k+2 .

▶ We can therefore bound εp above:

εp <
1

3(2p + 1)2

∞∑
k=0

1
(2p + 1)2k =

1
12

(1
p
− 1

p + 1

)
.



Proof

▶ Similarly, we bound εp below:

εp >
1

3(2p + 1)2

∞∑
k=0

1
[3(2p + 1)2]k

=
1

3(2p + 1)2

1
1 − 1

3(2p+1)2

>
1

12

( 1
p + 1/12

− 1
p + 1 + 1/12

)
.

▶ Now define

B =

∞∑
p=1

εp, rn =

∞∑
p=n

εp,

where from the lower and upper bound for εp we have

1/13 < B < 1/12.



▶ Then we can write

Sn = (n + 1/2) log n − n + 1 −
n−1∑
p=1

εp

= (n + 1/2) log n − n + 1 − B + rn,

or, setting C = e1−B, as

n! = Cnn+1/2e−nern ,

where rn satisfies

1/(12n + 1) < rn < 1/(12n).

▶ The constant C, lies between e11/12 and e12/13, may be shown to have
the value

√
2π. Indeed, by the Wallis formula we have√

π

2
= lim

n→∞

(2nn!)2

(2n)!
√

2n
= lim

n→∞

C222nn2n+1e−2n

C(2n)2n+1/2e−2n
√

2n
=

C
2
.

▶ Thus C =
√

2π and this completes the proof.



Partial summation

Theorem
▶ Let f , g : Z+ → C be arithmetic functions. Let F(x) :=

∑
1≤n≤x f (n).

Then for any a, b ∈ N with a < b, we have

b∑
n=a+1

f (n)g(n) = F(b)g(b)− F(a)g(a + 1)−
b−1∑

n=a+1

F(n)(g(n + 1)− g(n)).

▶ Let x, y ∈ R+ with ⌊y⌋ < ⌊x⌋, and let g ∈ C1([y, x]). Then∑
y<n≤x

f (n)g(n) = F(x)g(x)− F(y)g(y)−
∫ x

y
F(t)g′(t)dt

▶ In particular, if x ≥ 2 and g ∈ C1([1, x]), then∑
n≤x

f (n)g(n) = F(x)g(x)−
∫ x

1
F(t)g′(t)dt



Proof
▶ Since f (n) = F(n)− F(n − 1), we have

b∑
n=a+1

f (n)g(n) =
b∑

n=a+1

(F(n)− F(n − 1))g(n)

=
b∑

n=a+1

F(n)g(n)−
b−1∑
n=a

F(n)g(n + 1)

= F(b)g(b)− F(a)g(a + 1)−
b−1∑

n=a+1

F(n)(g(n + 1)− g(n)).

▶ If g ∈ C1([y, x]), then

g(n + 1)− g(n) =
∫ n+1

n
g′(t)dt,

and since F(t) = F(n) for n ≤ t < n + 1, it follows that

F(n)(g(n + 1)− g(n)) =
∫ n+1

n
F(t)g′(t)dt.



Proof
▶ Let a = ⌊y⌋, b = ⌊x⌋, since a ≤ y < a + 1 ≤ b ≤ x < b + 1, we have∑

y<n≤x

f (n)g(n) =
b∑

n=a+1

f (n)g(n)

= F(b)g(b)− F(a)g(a + 1)−
b−1∑

n=a+1

F(n)(g(n + 1)− g(n))

= F(x)g(b)− F(y)g(a + 1)−
b−1∑

n=a+1

∫ n+1

n
F(t)g′(t)dt

= F(x)g(x)− F(y)g(y)− F(x)(g(x)− g(b))− F(y)(g(a + 1)− g(y))

−
∫ b

a+1
F(t)g′(t)dt = F(x)g(x)− F(y)g(y)−

∫ x

y
F(t)g′(t)dt.

▶ If x ≥ 2 and g ∈ C1([1, x]), then∑
n≤x

f (n)g(n) = f (1)g(1) +
∑

1<n≤x

f (n)g(n)

= f (1)g(1) + F(x)g(x)− F(1)g(1)−
∫ x

1
F(t)g′(t)dt

= F(x)g(x)−
∫ x

1
F(t)g′(t)dt.



Partial summation ≡ Abel summation formula
Let (ak)k∈Z, (bk)k∈Z ⊆ C and m, n ∈ Z with m < n. If sk :=

∑k
l=m al, then

n∑
k=m+1

akbk = snbn − ambm+1 −
n−1∑

k=m+1

(bk+1 − bk) sk.

▶ Observe that ak = sk − sk−1, hence
n∑

k=m+1

akbk =

n∑
k=m+1

bk (sk − sk−1) =

n∑
k=m+1

bksk −
n−1∑
k=m

bk+1sk,

which implies the asserted result, since sm = am.
▶ One can deduce from this equality the following useful bound∣∣∣ n∑

k=m+1

akbk

∣∣∣ ≤ (2max{|bm+1|, |bn|}+ V[m,n]) max
m⩽k⩽n

|sk|,

where V[m,n] :=
∑n−1

k=m+1 |bk+1 − bk|.
▶ If (bk)k∈Z ⊆ R+ is a monotone, then∣∣∣ n∑

k=m+1

akbk

∣∣∣ ≤ 2max{bm+1, bn} max
m⩽k⩽n

|sk|.



Euler–Mascheroni constant constant
Since

n∑
k=1

1
k
⩾
∫ n

1

dt
t

= log n,

the sequence

un :=

n∑
k=1

1
k
− log n ≥ 0

is non-negative, and decreasing

un+1 − un =
1

n + 1
− log

(
1 +

1
n

)
⩽ 0

thus (un)n∈Z+
converges.

Definition
We call the Euler-Mascheroni constant, or more simply the Euler constant,
the real number γ defined by

γ := lim
n→∞

(
n∑

k=1

1
k
− log n

)
≈ 0.577215664901532 . . . .

The problem of the irrationality of γ still remains open!



Integral representation of γ
Theorem
Let n ∈ Z+, then

n∑
k=1

1
k
= log n + γ + R(n)

with 0 ⩽ R(n) < 1
n .

Proof.
▶ We use partial summation with f (t) = 1 and g(t) = 1

t which gives

n∑
k=1

1
k
=

1
n

n∑
k=1

1 +

∫ n

1

1
t2

( ∑
1≤k⩽t

1
)

dt

= 1 +

∫ n

1

t − {t}
t2 dt = log n +

(
1 −

∫ ∞

1

{t}
t2 dt

)
+

∫ ∞

n

{t}
t2 dt

▶ Thus γ = limn→∞
(∑n

k=1
1
k − log n

)
= 1 −

∫∞
1

{t}
t2 dt, and

R(n) :=
∫ ∞

n

{t}
t2 dt <

∫ ∞

n

1
t2 dt =

1
n
.



Absolute convergence of Dirichlet series
Proposition
For each Dirichlet series D(s, f ), there exists σa ∈ R ∪ {±∞}, called the
abscissa of absolute convergence, such that
▶ D(s, f ) converges absolutely in the half-plane σ > σa;
▶ D(s, f ) does not converge absolutely in the half-plane σ < σa.

Remarks
▶ In particular, the series D(s, f ) defines an analytic function in the

halfplane σ > σa. By abuse of notation, this function will be still
denoted by D(s, f ).

▶ If | f (n)| ⩽ log n, then the series D(s, f ) is absolutely convergent in the
half-plane σ > 1, and hence σa ⩽ 1.

▶ At σ = σa, the series may or may not converge absolutely. For instance,
ζ(s) converges absolutely in the half-plane σ > σa = 1, but does not
converge on the line σ = 1.

▶ On the other hand, the Dirichlet series associated to the function f (n) =
1/(log(en))2 has also σa = 1 for the abscissa of absolute convergence,
but converges absolutely at σ = 1.



Proof
▶ Let S := {s ∈ C : D(s, f ) converges absolutely}.
▶ If S = ∅, then put σa = +∞. Otherwise define

σa := inf{σ : s = σ + it ∈ S}

▶ D(s, f ) does not converge absolutely if σ < σa by the definition of σa.
▶ On the other hand, suppose that D(s, f ) is absolutely convergent for

some s0 = σ0 + it0 ∈ C and let s = σ + it be such that σ ⩾ σ0. Since∣∣∣∣ f (n)ns

∣∣∣∣ = ∣∣∣∣ f (n)ns0

∣∣∣∣× 1
nσ−σ0

⩽

∣∣∣∣ f (n)ns0

∣∣∣∣
we infer that D(s, f ) converges absolutely at any point s with σ ⩾ σ0.

▶ Now by the definition of σa, there exist points arbitrarily close to σa at
which D(s, f ) converges absolutely, and therefore by above D(s, f )
converges absolutely at each point s such that σ > σa.

The partial sums
∑

x<n⩽y f (n) and the Dirichlet series D(s, f ) are strongly
related to each other. The next result shows that if we are able to estimate the
order of magnitude of

∑
x<n⩽y f (n), then a region of absolute convergence

of D(s, f ) is known.



Simple criterium for absolute convergence

Proposition
Let D(s, f ) =

∑∞
n=1 f (n)n−s be a Dirichlet series. Assume that

| f (n)| ⩽ Mnα for all n ∈ Z+,

for some α ⩾ 0 and M > 0 independent of n.
▶ Then D(s, f ) converges absolutely in the half-plane σ > α+ 1.

Proof.
Indeed, observe that

|D(s, f )| =
∞∑

n=1

| f (n)n−s| ≤ M
∞∑

n=1

n−(σ−α) < ∞,

whenever σ > α+ 1, as desired.



Dirichlet series for products
Proposition
Let f , g be two arithmetic functions. The the associated Dirichlet series
D(s, f ) and D(s, g) are absolutely convergent at a point s0, then D(s, f ⋆ g)
converges absolutely at s0 and we have D(s0, f ⋆ g) = D(s0, f )D(s0, g).

Proof.
▶ We have

D(s0, f )D(s0, g) =
∞∑

n=1

f ⋆ g(n)
ns0

= D(s, f ⋆ g),

where the rearrangement of the terms in the double sums is justified by
the absolute convergence of the two series D(s, f ) and D(s, g) at s = s0.

▶ Furthermore, we have

∞∑
n=1

∣∣∣∣ f ⋆ g(n)
ns0

∣∣∣∣ ⩽
( ∞∑

n=1

∣∣∣∣ f (n)ns0

∣∣∣∣
)( ∞∑

n=1

∣∣∣∣g(n)ns0

∣∣∣∣
)

proving the absolute convergence of D(s0, f ⋆ g).
This completes the proof.



Dirichlet series for inverses
Corollary
Let f be an arithmetic function such that f (1) ̸= 0. Let f−1 be the
convolution inverse of the fuction f , i.e. f ⋆ f−1 = δ. Then

D(s, f−1) =
1

D(s, f )

at every point s where D(s, f ) and D(s, f−1) converge absolutely.

Example
▶ The Möbius function satisfies µ−1 = 1, hence for σ > 1, we have

∞∑
n=1

µ(n)
ns =

1
ζ(s)

.

▶ In particular, we have

∞∑
n=1

µ(n)
n2 =

6
π2 , since ζ(2) =

∞∑
n=1

1
n2 =

π2

6
.



Computation of abscissa of the absolute convergence
Proposition
Let f be an arithmetic function.

(i) If | f (n)| ⩽ Mnα for some M ∈ R+ and α ⩾ 0, then σa ⩽ α+ 1.

(ii) We have

σa ≤ L := lim sup
n→∞

(
1 +

log | f (n)|
log n

)
.

Proof.
▶ The first part follows from our criterium for absolute convergence.
▶ For the second part we may suppose that L < ∞ and let σ > L. Fix

ε > 0 so that σ − ε > L + ε. Then there exists a large Nε ∈ Z+ such
that, for all n ⩾ Nε, we have

1 +
log | f (n)|

log n
< L + ε < σ − ε

and hence, for all n ⩾ Nε, we obtain∣∣∣∣ f (n)
ns

∣∣∣∣ < nσ−1−ε

nσ
=

1
n1+ε

.

▶ Hence D(s, f ) is absolutely convergent in the half-plane σ > L.



Quantitaive estimates

Proposition
Let D(s, f ) =

∑∞
n=1 f (n)n−s be a Dirichlet series. Assume that∣∣∣ ∑

x<n⩽y

f (n)
∣∣∣ ⩽ Myα for all 0 < x < y,

for some α ⩾ 0 and M > 0 independent of x and y.
▶ Then D(s, f ) converges in the half-plane σ > α.
▶ Furthermore, we have in this half-plane

|D(s, f )| ⩽ M|s|
σ − α

, and
∣∣∣∣ ∑

x<n⩽y

f (n)
ns

∣∣∣∣ ⩽ M
xσ−α

(
|s|

σ − α
+ 1
)
.

Remark
▶ The latter statement ensures that D(s, f ) converges uniformly in any

compact subset of the half plane σ > α.



Proof
▶ Set A(x) =

∑
1≤n⩽x f (n) and S(x, y) = A(y)− A(x). By partial

summation we have∑
x<n⩽y

f (n)
ns =

S(x, y)
ys + s

∫ y

x

S(x, u)
us+1 du.

▶ By hypothesis we have |S(x, y)/ys| ⩽ Myα−σ , so that S(x, y)/ys tends
to 0 as y → ∞ in the half-plane σ > α.

▶ Therefore if one of

D(s, f ) =
∑
n∈N

f (n)
ns , or s

∫ ∞

1

A(u)
us+1 du.

converges, then so does the other, and the two quantities converge to the
same limit.

▶ But since ∣∣∣∣A(u)us+1

∣∣∣∣ ⩽ M
uσ−α+1 ,

we infer that the integral converges absolutely for σ > α, and hence
D(s, f ) is convergent in this half-plane.



Proof

▶ Therefore for all σ > α, we obtain

∞∑
n=1

f (n)
ns = s

∫ ∞

1

A(u)
us+1 du,

and hence

|D(s, f )| ⩽ M|s|
∫ ∞

1

du
uσ−α+1 =

M|s|
σ − α

.

▶ Similarly∣∣∣ ∑
x<n⩽y

f (n)
ns

∣∣∣ ⩽ M
yσ−α

+ M|s|
∫ ∞

x

du
uσ−α+1 ⩽

M
xσ−α

(
|s|

σ − α
+ 1
)

as required.



Conditional convergence of Dirichlet series
Proposition
For each Dirichlet series D(s, f ), there exists σc ∈ R ∪ {±∞}, called the
abscissa of convergence, such that D(s, f ) converges in the half-plane
σ > σc and does not converge in the half-plane σ < σc. Furthermore,

σc ⩽ σa ⩽ σc + 1.

Proof.
▶ Suppose first that D(s, f ) converges at a point s0 = σ0 + it0 and fix a

small real number ε > 0. By Cauchy’s theorem, there exists xε ⩾ 1
such that, for all y > x ⩾ xε, we have∣∣∣∣ ∑

x<n⩽y

f (n)
ns0

∣∣∣∣ ⩽ ε.

▶ Let s = σ + it ∈ C such that σ > σ0. Using the previous proposition
with s replaced by s − s0 and α = 0, we obtain∣∣∣∣ ∑

x<n⩽y

f (n)
ns

∣∣∣∣ ⩽ ε

(
|s − s0|
σ − σ0

+ 1
)
.

so that D(s, f ) converges by Cauchy’s theorem.



Proof
▶ Now we may proceed as before. Let S := {s ∈ C : D(s, f ) converges}.
▶ If S = ∅, then we put σc = +∞. Otherwise define

σc := inf{σ : s = σ + it ∈ S}.

▶ D(s, f ) does not converge if σ < σa by the definition of σc.
▶ On the other hand, there exist points s0 with σ0 being arbitrarily close to

σc at which D(s, f ) converges.
▶ By above, D(s, f ) converges at any point s such that σ > σ0. Since σ0

may be chosen as close to σc as we want, it follows that D(s, f )
converges at any point s such that σ > σc.

▶ The inequality σc ⩽ σa ⩽ σc + 1 remains to be shown.
▶ The lower bound is obvious. For the upper bound, it suffices to show

that if D(s0, f ) converges for some s0, then it converges absolutely for
all s such that σ > σ0 + 1. Now if D(s, f ) converges at some point s0,
then limn→∞ f (n)n−s0 = 0. Thus there exists a positive integer n0 such
that, for all n ⩾ n0, we have | f (n)| ≤ nσ0 , hence D(s, f ) is absolutely
convergent in the half-plane σ > σ0 + 1 as required.



Dirichlet series are holomorphic
Theorem
A Dirichlet series D(s, f ) =

∑∞
n=1 f (n)n−s defines a holomorphic function of

the variable s in the half-plane σ > σc, in which D(s, f ) can be differentiated
term by term so that, for all s = σ + it such that σ > σc, we have

∂k
s D(s, f ) =

∞∑
n=1

(−1)k(log n)kf (n)
ns , for k ∈ Z+.

Proof.
▶ We know that the partial sums of a Dirichlet series is a holomorphic

function of the variable s that converges uniformly on any compact
subset of the half-plane σ > σc.

▶ Therefore, the limit D(s, f ) defines a holomorphic function of the
variable s in this half-plane.

▶ Consequently, term-by-term differentiation is allowed, and since
n−s = e−s log n, then

∂k
s n−s = (−1)k(log n)kn−s,

and the desired formula follows.



Dirichlet series are determined uniquely
Proposition
Let D(s, f ) =

∑∞
n=1 f (n)n−s be a Dirichlet series with abscissa of

convergence σc. If D(s, f ) = 0 for all s such that σ > σc, then f (n) = 0 for
all n ∈ Z+. In particular, if D(s, f ) = D(s, f ) for all s such that σ > σc, then
f (n) = g(n) for all n ∈ Z+.

Proof.
▶ Suppose the contrary and let k ∈ Z+ be the smallest integer such that

f (k) ̸= 0. Then D(s, f ) =
∑∞

n=k f (n)n−s = 0 for all s such that σ > σc.
Then we have

G(s) = ksD(s, f ) = ks
∞∑

n=k

f (n)
ns = 0.

▶ Therefore, for all s such that σ > σc we have

G(s) = f (k) +
∞∑

n=k+1

f (n)
(

k
n

)s

= 0.

▶ Hence
0 = lim

σ→∞
G(σ) = f (k) ̸= 0,

which is impossible.



Singularity on the axis of convergence
Theorem (Landau)
If f (n) ⩾ 0 for all n ∈ Z+, and D(s, f ) =

∑∞
n=1 f (n)n−s is a Dirichlet series

with abscissa of convergence σc ∈ R, then D(s, f ) has a singularity at s = σc.

Proof.
▶ Without loss of generality, we may assume that σc = 0 and

|D(0, f )| < ∞. By the Taylor expansion of D(s, f ) about a > 0 we have

D(s, f ) =
∞∑

k=0

(s − a)k

k!
∂k

s D(a, f ) =
∞∑

k=0

(s − a)k

k!

∞∑
n=1

(−1)k(log n)kf (n)
na ,

which must converge at some s = b < 0. Hence

0 ≤
∞∑

k=0

∞∑
n=1

((a − b) log n)kf (n)
nak!

< ∞.

▶ Each term is nonnegative, so the order of summation may be changed

∞∑
n=1

f (n)
na

∞∑
k=0

((a − b) log n)k

k!
=

∞∑
n=1

f (n)
nb ,

which does not converge, since b < 0 = σc, giving a contradiction.



Series of multiplicative functions
Theorem
Let f be a multiplicative function satisfying

∑
p∈P

∞∑
k=1

| f (pk)| < ∞.

Then the series
∑

n⩾1 f (n) is absolutely convergent and we have

∞∑
n=1

f (n) =
∏
p∈P

(
1 +

∞∑
k=1

f
(
pk)) .

Proof.
▶ Let us first notice that the inequality

∑
p∈P
∑∞

k=1 | f (pk)| < ∞ implies
the convergence of the product

∏
p∈P

(
1 +

∞∑
k=1

∣∣ f
(
pk)∣∣) ≤ exp

(∑
p∈P

∞∑
k=1

| f (pk)|
)

< ∞.



Proof
▶ Now let x ⩾ 2 be a real number and set

P(x) =
∏

p∈P≤x

(
1 +

∞∑
k=1

∣∣ f (pk)
∣∣).

▶ The convergence of the series
∑∞

k=1

∣∣ f
(
pk
)∣∣ enables us to rearrange

the terms when we expand P(x), hence

P(x) =
∑

gpf(n)≤x

| f (n)|,

where gpf(1) = 1 and gpf(n) is the greatest prime factor of n ≥ 2.
▶ Since each integer n ⩽ x satisfies the condition gpf(n) ⩽ x, we have∑

1≤n⩽x

| f (n)| ⩽ P(x)

▶ Since P(x) has a finite limit as x → ∞, the above inequality implies
that

∑
n⩾1 | f (n)| < ∞. The second part of the theorem follows from

the inequality∣∣∣∣ ∞∑
n=1

f (n)−
∏

p∈P≤x

(
1 +

∞∑
k=1

f (pk)
)∣∣∣∣ ⩽∑

n>x

| f (n)|,

and the fact that the right-hand side tends to 0 as x → ∞.



Multiplication of Dirichlet series
Theorem
Let f be a multiplicative function and let s0 ∈ C. Then the three following
assertions are equivalent.

(i) One has ∑
p∈P

∞∑
k=1

| f (pk)|
ps0k < ∞.

(ii) The series D(s, f ) is absolutely convergent in the half-plane σ > σ0.

(iii) The product ∏
p∈P

(
1 +

∞∑
k=1

f (pk)

psk

)
is absolutely convergent in the half-plane σ > σ0. If one of these
conditions holds, then we have for all σ > σ0 that

D(s, f ) =
∏
p∈P

(
1 +

∞∑
k=1

f (pk)

psk

)
.

In particular, if σa is the abscissa of absolute convergence of D(s, f ),
then the last identity holds for all σ > σa.


