

Analytic Number Theory

Lecture 3

Mariusz Mirek
Rutgers University

Padova, March 17, 2025.

Supported by the NSF grant DMS-2154712,
and the CAREER grant DMS-2236493.

Monotonic, unimodal and integrable functions

Definition

A function $f : I \rightarrow \mathbb{R}$ is unimodal on an interval $I = [a, b]$ if there exists a number $t_0 \in I$ such that $f(t)$ is increasing for $t \leq t_0$ and decreasing for $t \geq t_0$. For example, $f(t) = \log^k t/t$ is unimodal on the interval $[1, \infty)$ with $t_0 = e^k$.

Theorem

- ▶ Let $a, b \in \mathbb{Z}$ with $a < b$, and let $f : [a, b] \rightarrow \mathbb{R}$ be monotonic. Then

$$\min\{f(a), f(b)\} \leq \sum_{n=a}^b f(n) - \int_a^b f(t)dt \leq \max\{f(a), f(b)\}.$$

- ▶ Let $x, y \in \mathbb{R}$ with $y < \lfloor x \rfloor$, and let $f : [y, x] \rightarrow \mathbb{R}_+$ be monotonic. Then

$$\left| \sum_{y < n \leq x} f(n) - \int_y^x f(t)dt \right| \leq \max\{f(y), f(x)\}.$$

- ▶ Let $f : [1, \infty) \rightarrow \mathbb{R}_+$ be unimodal. Then

$$F(x) = \sum_{n \leq x} f(n) = \int_1^x f(t)dt + O(1).$$

Proof

- If $f : [a, b] \rightarrow \mathbb{R}$ is increasing, then

$$\int_a^b f(t)dt = \sum_{k=a}^{b-1} \int_k^{k+1} f(t)dt \leq \sum_{k=a+1}^b f(k),$$

and also

$$\int_a^b f(t)dt = \sum_{k=a}^{b-1} \int_k^{k+1} f(t)dt \geq \sum_{k=a}^{b-1} f(k),$$

- Hence, we conclude that

$$f(a) + \int_a^b f(t)dt \leq \sum_{k=a}^b f(k) \leq f(b) + \int_a^b f(t)dt.$$

- If $f : [a, b] \rightarrow \mathbb{R}$ is decreasing, then

$$f(b) + \int_a^b f(t)dt \leq \sum_{k=a}^b f(k) \leq f(a) + \int_a^b f(t)dt.$$

- Combining those two inequalities we obtain the desired conclusion.

Proof

- ▶ Let $f : [y, x] \rightarrow \mathbb{R}_+$ be increasing. Let $a = \lfloor y \rfloor + 1$ and $b = \lfloor x \rfloor$. We have $y < a \leq b \leq x$ and

$$\sum_{y < n \leq x} f(n) = \sum_{a \leq n \leq b} f(n) \leq \int_a^b f(t)dt + f(b) \leq \int_y^x f(t)dt + f(x)$$

- ▶ Since $f(a) \geq \int_y^a f(t)dt$ and $f(x) \geq \int_b^x f(t)dt$, it follows that

$$\begin{aligned} \sum_{y < n \leq x} f(n) &\geq \int_a^b f(t)dt + f(a) \\ &\geq \int_y^x f(t)dt - \int_b^x f(t)dt + f(a) - \int_y^a f(t)dt \\ &\geq \int_y^x f(t)dt - f(x) \end{aligned}$$

- ▶ Therefore,

$$\left| \sum_{y < n \leq x} f(n) - \int_x^y f(t)dt \right| \leq f(x).$$

Proof

- If $f : [y, x] \rightarrow \mathbb{R}_+$ be decreasing, we obtain a similar conclusion

$$\left| \sum_{y < n \leq x} f(n) - \int_x^y f(t) dt \right| \leq f(y),$$

which proves the second inequality.

- Finally, if the function $f : [1, \infty) \rightarrow \mathbb{R}_+$ is unimodal, then $f(t)$ is bounded and the conclusion follows from the second inequality. □

Example: a simple form of Stirling's formula

For $x \geq 2$, we have

$$\sum_{n \leq x} \log n = x \log x - x + 1 + O(\log x).$$

- Indeed, the function $f(t) = \log t$ is increasing on $[1, x]$. By the previous theorem, we have

$$\int_1^x \log t dt \leq \sum_{n \leq x} \log n \leq \int_1^x \log t dt + \log x,$$

which gives the desired claim, since $\int_1^x \log t dt = x \log x - x + 1$.

Stirling's formula

Theorem

For $n \in \mathbb{N}$, we have

$$n! = \sqrt{2\pi} n^{n+1/2} e^{-n} e^{r_n},$$

where r_n satisfies the double inequality

$$\frac{1}{12n+1} < r_n < \frac{1}{12n}.$$

In other words we have

$$\sqrt{2\pi} n^{n+1/2} e^{-n} e^{\frac{1}{12n+1}} < n! < \sqrt{2\pi} n^{n+1/2} e^{-n} e^{\frac{1}{12n}}.$$

Proof

- ▶ Let

$$S_n = \log(n!) = \sum_{p=1}^{n-1} \log(p+1)$$

and write

$$\log(p+1) = A_p + b_p - \varepsilon_p,$$

where

$$A_p = \int_p^{p+1} \log x \, dx,$$

$$b_p = [\log(p+1) - \log p]/2,$$

$$\varepsilon_p = \int_p^{p+1} \log x \, dx - [\log(p+1) + \log p]/2.$$

- ▶ In other words, $\log(p+1)$ is regarded as the area of a rectangle with base $(p, p+1)$ and height $\log(p+1)$ partitioned into a curvilinear area A_p , a triangle b_p , and a small sliver ε_p suggested by the geometry of the curve $y = \log x$.

Proof

► Then

$$S_n = \sum_{p=1}^{n-1} (A_p + b_p - \varepsilon_p) = \int_1^n \log x \, dx + \frac{1}{2} \log n - \sum_{p=1}^{n-1} \varepsilon_p.$$

► Since $\int \log x \, dx = x \log x - x$ we can write

$$S_n = (n + 1/2) \log n - n + 1 - \sum_{p=1}^{n-1} \varepsilon_p,$$

where

$$\begin{aligned} \varepsilon_p &= \int_p^{p+1} \log x \, dx - [\log(p+1) + \log p]/2 \\ &= (p+1) \log(p+1) - p \log p - 1 - [\log(p+1) + \log p]/2 \\ &= \frac{2p+1}{2} \log \left(\frac{p+1}{p} \right) - 1. \end{aligned}$$

Proof

- ▶ Using the well known series expansions

$$\log\left(\frac{1+x}{1-x}\right) = 2 \sum_{k=0}^{\infty} \frac{x^{2k+1}}{2k+1}$$

valid for $|x| < 1$, and setting $x = (2p+1)^{-1}$, so that $(1+x)/(1-x) = (p+1)/p$, we find that

$$\varepsilon_p = \frac{2p+1}{2} \log\left(\frac{p+1}{p}\right) - 1 = \sum_{k=0}^{\infty} \frac{1}{(2k+3)(2p+1)^{2k+2}}.$$

- ▶ We can therefore bound ε_p above:

$$\varepsilon_p < \frac{1}{3(2p+1)^2} \sum_{k=0}^{\infty} \frac{1}{(2p+1)^{2k}} = \frac{1}{12} \left(\frac{1}{p} - \frac{1}{p+1} \right).$$

Proof

- ▶ Similarly, we bound ε_p below:

$$\begin{aligned}\varepsilon_p &> \frac{1}{3(2p+1)^2} \sum_{k=0}^{\infty} \frac{1}{[3(2p+1)^2]^k} = \frac{1}{3(2p+1)^2} \frac{1}{1 - \frac{1}{3(2p+1)^2}} \\ &> \frac{1}{12} \left(\frac{1}{p+1/12} - \frac{1}{p+1+1/12} \right).\end{aligned}$$

- ▶ Now define

$$B = \sum_{p=1}^{\infty} \varepsilon_p, \quad r_n = \sum_{p=n}^{\infty} \varepsilon_p,$$

where from the lower and upper bound for ε_p we have

$$1/13 < B < 1/12.$$

- Then we can write

$$\begin{aligned}
 S_n &= (n + 1/2) \log n - n + 1 - \sum_{p=1}^{n-1} \varepsilon_p \\
 &= (n + 1/2) \log n - n + 1 - B + r_n,
 \end{aligned}$$

or, setting $C = e^{1-B}$, as

$$n! = Cn^{n+1/2}e^{-n}e^{r_n},$$

where r_n satisfies

$$1/(12n + 1) < r_n < 1/(12n).$$

- The constant C , lies between $e^{11/12}$ and $e^{12/13}$, may be shown to have the value $\sqrt{2\pi}$. Indeed, by the Wallis formula we have

$$\sqrt{\frac{\pi}{2}} = \lim_{n \rightarrow \infty} \frac{(2^n n!)^2}{(2n)! \sqrt{2n}} = \lim_{n \rightarrow \infty} \frac{C^2 2^{2n} n^{2n+1} e^{-2n}}{C(2n)^{2n+1/2} e^{-2n} \sqrt{2n}} = \frac{C}{2}.$$

- Thus $C = \sqrt{2\pi}$ and this completes the proof. □

Partial summation

Theorem

- ▶ Let $f, g : \mathbb{Z}_+ \rightarrow \mathbb{C}$ be arithmetic functions. Let $F(x) := \sum_{1 \leq n \leq x} f(n)$. Then for any $a, b \in \mathbb{N}$ with $a < b$, we have

$$\sum_{n=a+1}^b f(n)g(n) = F(b)g(b) - F(a)g(a+1) - \sum_{n=a+1}^{b-1} F(n)(g(n+1) - g(n)).$$

- ▶ Let $x, y \in \mathbb{R}_+$ with $\lfloor y \rfloor < \lfloor x \rfloor$, and let $g \in C^1([y, x])$. Then

$$\sum_{y < n \leq x} f(n)g(n) = F(x)g(x) - F(y)g(y) - \int_y^x F(t)g'(t)dt$$

- ▶ In particular, if $x \geq 2$ and $g \in C^1([1, x])$, then

$$\sum_{n \leq x} f(n)g(n) = F(x)g(x) - \int_1^x F(t)g'(t)dt$$

Proof

- Since $f(n) = F(n) - F(n - 1)$, we have

$$\begin{aligned}\sum_{n=a+1}^b f(n)g(n) &= \sum_{n=a+1}^b (F(n) - F(n - 1))g(n) \\ &= \sum_{n=a+1}^b F(n)g(n) - \sum_{n=a}^{b-1} F(n)g(n+1) \\ &= F(b)g(b) - F(a)g(a+1) - \sum_{n=a+1}^{b-1} F(n)(g(n+1) - g(n)).\end{aligned}$$

- If $g \in C^1([y, x])$, then

$$g(n+1) - g(n) = \int_n^{n+1} g'(t)dt,$$

and since $F(t) = F(n)$ for $n \leq t < n + 1$, it follows that

$$F(n)(g(n+1) - g(n)) = \int_n^{n+1} F(t)g'(t)dt.$$

Proof

► Let $a = \lfloor y \rfloor, b = \lfloor x \rfloor$, since $a \leq y < a + 1 \leq b \leq x < b + 1$, we have

$$\begin{aligned} \sum_{y < n \leq x} f(n)g(n) &= \sum_{n=a+1}^b f(n)g(n) \\ &= F(b)g(b) - F(a)g(a+1) - \sum_{n=a+1}^{b-1} F(n)(g(n+1) - g(n)) \\ &= F(x)g(b) - F(y)g(a+1) - \sum_{n=a+1}^{b-1} \int_n^{n+1} F(t)g'(t)dt \\ &= F(x)g(x) - F(y)g(y) - F(x)(g(x) - g(b)) - F(y)(g(a+1) - g(y)) \\ &\quad - \int_{a+1}^b F(t)g'(t)dt = F(x)g(x) - F(y)g(y) - \int_y^x F(t)g'(t)dt. \end{aligned}$$

► If $x \geq 2$ and $g \in C^1([1, x])$, then

$$\begin{aligned} \sum_{n \leq x} f(n)g(n) &= f(1)g(1) + \sum_{1 < n \leq x} f(n)g(n) \\ &= f(1)g(1) + F(x)g(x) - F(1)g(1) - \int_1^x F(t)g'(t)dt \\ &= F(x)g(x) - \int_1^x F(t)g'(t)dt. \quad \square \end{aligned}$$

Partial summation \equiv Abel summation formula

Let $(a_k)_{k \in \mathbb{Z}}, (b_k)_{k \in \mathbb{Z}} \subseteq \mathbb{C}$ and $m, n \in \mathbb{Z}$ with $m < n$. If $s_k := \sum_{l=m}^k a_l$, then

$$\sum_{k=m+1}^n a_k b_k = s_n b_n - a_m b_{m+1} - \sum_{k=m+1}^{n-1} (b_{k+1} - b_k) s_k.$$

- ▶ Observe that $a_k = s_k - s_{k-1}$, hence

$$\sum_{k=m+1}^n a_k b_k = \sum_{k=m+1}^n b_k (s_k - s_{k-1}) = \sum_{k=m+1}^n b_k s_k - \sum_{k=m}^{n-1} b_{k+1} s_k,$$

which implies the asserted result, since $s_m = a_m$.

- ▶ One can deduce from this equality the following useful bound

$$\left| \sum_{k=m+1}^n a_k b_k \right| \leq (2 \max\{|b_{m+1}|, |b_n|\} + V_{[m,n]}) \max_{m \leq k \leq n} |s_k|,$$

where $V_{[m,n]} := \sum_{k=m+1}^{n-1} |b_{k+1} - b_k|$.

- ▶ If $(b_k)_{k \in \mathbb{Z}} \subseteq \mathbb{R}_+$ is a monotone, then

$$\left| \sum_{k=m+1}^n a_k b_k \right| \leq 2 \max\{b_{m+1}, b_n\} \max_{m \leq k \leq n} |s_k|.$$

Euler–Mascheroni constant constant

Since

$$\sum_{k=1}^n \frac{1}{k} \geq \int_1^n \frac{dt}{t} = \log n,$$

the sequence

$$u_n := \sum_{k=1}^n \frac{1}{k} - \log n \geq 0$$

is non-negative, and decreasing

$$u_{n+1} - u_n = \frac{1}{n+1} - \log \left(1 + \frac{1}{n} \right) \leq 0$$

thus $(u_n)_{n \in \mathbb{Z}_+}$ converges.

Definition

We call the Euler–Mascheroni constant, or more simply the Euler constant, the real number γ defined by

$$\gamma := \lim_{n \rightarrow \infty} \left(\sum_{k=1}^n \frac{1}{k} - \log n \right) \approx 0.577215664901532 \dots$$

The problem of the irrationality of γ still remains open!

Integral representation of γ

Theorem

Let $n \in \mathbb{Z}_+$, then

$$\sum_{k=1}^n \frac{1}{k} = \log n + \gamma + R(n)$$

with $0 \leq R(n) < \frac{1}{n}$.

Proof.

- We use partial summation with $f(t) = 1$ and $g(t) = \frac{1}{t}$ which gives

$$\begin{aligned} \sum_{k=1}^n \frac{1}{k} &= \frac{1}{n} \sum_{k=1}^n 1 + \int_1^n \frac{1}{t^2} \left(\sum_{1 \leq k \leq t} 1 \right) dt \\ &= 1 + \int_1^n \frac{t - \{t\}}{t^2} dt = \log n + \left(1 - \int_1^\infty \frac{\{t\}}{t^2} dt \right) + \int_n^\infty \frac{\{t\}}{t^2} dt \end{aligned}$$

- Thus $\gamma = \lim_{n \rightarrow \infty} \left(\sum_{k=1}^n \frac{1}{k} - \log n \right) = 1 - \int_1^\infty \frac{\{t\}}{t^2} dt$, and

$$R(n) := \int_n^\infty \frac{\{t\}}{t^2} dt < \int_n^\infty \frac{1}{t^2} dt = \frac{1}{n}. \quad \square$$

Absolute convergence of Dirichlet series

Proposition

For each Dirichlet series $D(s, f)$, there exists $\sigma_a \in \mathbb{R} \cup \{\pm\infty\}$, called the abscissa of absolute convergence, such that

- ▶ $D(s, f)$ converges absolutely in the half-plane $\sigma > \sigma_a$;
- ▶ $D(s, f)$ does not converge absolutely in the half-plane $\sigma < \sigma_a$.

Remarks

- ▶ In particular, the series $D(s, f)$ defines an analytic function in the halfplane $\sigma > \sigma_a$. By abuse of notation, this function will be still denoted by $D(s, f)$.
- ▶ If $|f(n)| \leq \log n$, then the series $D(s, f)$ is absolutely convergent in the half-plane $\sigma > 1$, and hence $\sigma_a \leq 1$.
- ▶ At $\sigma = \sigma_a$, the series may or may not converge absolutely. For instance, $\zeta(s)$ converges absolutely in the half-plane $\sigma > \sigma_a = 1$, but does not converge on the line $\sigma = 1$.
- ▶ On the other hand, the Dirichlet series associated to the function $f(n) = 1/(\log(en))^2$ has also $\sigma_a = 1$ for the abscissa of absolute convergence, but converges absolutely at $\sigma = 1$.

Proof

- ▶ Let $S := \{s \in \mathbb{C} : D(s, f) \text{ converges absolutely}\}$.
- ▶ If $S = \emptyset$, then put $\sigma_a = +\infty$. Otherwise define

$$\sigma_a := \inf\{\sigma : s = \sigma + it \in S\}$$

- ▶ $D(s, f)$ does not converge absolutely if $\sigma < \sigma_a$ by the definition of σ_a .
- ▶ On the other hand, suppose that $D(s, f)$ is absolutely convergent for some $s_0 = \sigma_0 + it_0 \in \mathbb{C}$ and let $s = \sigma + it$ be such that $\sigma \geq \sigma_0$. Since

$$\left| \frac{f(n)}{n^s} \right| = \left| \frac{f(n)}{n^{s_0}} \right| \times \frac{1}{n^{\sigma - \sigma_0}} \leq \left| \frac{f(n)}{n^{s_0}} \right|$$

we infer that $D(s, f)$ converges absolutely at any point s with $\sigma \geq \sigma_0$.

- ▶ Now by the definition of σ_a , there exist points arbitrarily close to σ_a at which $D(s, f)$ converges absolutely, and therefore by above $D(s, f)$ converges absolutely at each point s such that $\sigma > \sigma_a$. □

The partial sums $\sum_{x < n \leq y} f(n)$ and the Dirichlet series $D(s, f)$ are strongly related to each other. The next result shows that if we are able to estimate the order of magnitude of $\sum_{x < n \leq y} f(n)$, then a region of absolute convergence of $D(s, f)$ is known.

Simple criterium for absolute convergence

Proposition

Let $D(s,f) = \sum_{n=1}^{\infty} f(n)n^{-s}$ be a Dirichlet series. Assume that

$$|f(n)| \leq Mn^{\alpha} \quad \text{for all } n \in \mathbb{Z}_+,$$

for some $\alpha \geq 0$ and $M > 0$ independent of n .

- ▶ Then $D(s,f)$ converges absolutely in the half-plane $\sigma > \alpha + 1$.

Proof.

Indeed, observe that

$$|D(s,f)| = \sum_{n=1}^{\infty} |f(n)n^{-s}| \leq M \sum_{n=1}^{\infty} n^{-(\sigma-\alpha)} < \infty,$$

whenever $\sigma > \alpha + 1$, as desired. □

Dirichlet series for products

Proposition

Let f, g be two arithmetic functions. The the associated Dirichlet series $D(s, f)$ and $D(s, g)$ are absolutely convergent at a point s_0 , then $D(s, f \star g)$ converges absolutely at s_0 and we have $D(s_0, f \star g) = D(s_0, f)D(s_0, g)$.

Proof.

- We have

$$D(s_0, f)D(s_0, g) = \sum_{n=1}^{\infty} \frac{f \star g(n)}{n^{s_0}} = D(s, f \star g),$$

where the rearrangement of the terms in the double sums is justified by the absolute convergence of the two series $D(s, f)$ and $D(s, g)$ at $s = s_0$.

- Furthermore, we have

$$\sum_{n=1}^{\infty} \left| \frac{f \star g(n)}{n^{s_0}} \right| \leq \left(\sum_{n=1}^{\infty} \left| \frac{f(n)}{n^{s_0}} \right| \right) \left(\sum_{n=1}^{\infty} \left| \frac{g(n)}{n^{s_0}} \right| \right)$$

proving the absolute convergence of $D(s_0, f \star g)$.

This completes the proof. □

Dirichlet series for inverses

Corollary

Let f be an arithmetic function such that $f(1) \neq 0$. Let f^{-1} be the convolution inverse of the function f , i.e. $f \star f^{-1} = \delta$. Then

$$D(s, f^{-1}) = \frac{1}{D(s, f)}$$

at every point s where $D(s, f)$ and $D(s, f^{-1})$ converge absolutely.

Example

- The Möbius function satisfies $\mu^{-1} = \mathbf{1}$, hence for $\sigma > 1$, we have

$$\sum_{n=1}^{\infty} \frac{\mu(n)}{n^s} = \frac{1}{\zeta(s)}.$$

- In particular, we have

$$\sum_{n=1}^{\infty} \frac{\mu(n)}{n^2} = \frac{6}{\pi^2}, \quad \text{since} \quad \zeta(2) = \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

Computation of abscissa of the absolute convergence

Proposition

Let f be an arithmetic function.

- (i) If $|f(n)| \leq Mn^\alpha$ for some $M \in \mathbb{R}_+$ and $\alpha \geq 0$, then $\sigma_a \leq \alpha + 1$.
- (ii) We have

$$\sigma_a \leq L := \limsup_{n \rightarrow \infty} \left(1 + \frac{\log |f(n)|}{\log n} \right).$$

Proof.

- The first part follows from our criterium for absolute convergence.
- For the second part we may suppose that $L < \infty$ and let $\sigma > L$. Fix $\varepsilon > 0$ so that $\sigma - \varepsilon > L + \varepsilon$. Then there exists a large $N_\varepsilon \in \mathbb{Z}_+$ such that, for all $n \geq N_\varepsilon$, we have

$$1 + \frac{\log |f(n)|}{\log n} < L + \varepsilon < \sigma - \varepsilon$$

and hence, for all $n \geq N_\varepsilon$, we obtain

$$\left| \frac{f(n)}{n^\sigma} \right| < \frac{n^{\sigma-1-\varepsilon}}{n^\sigma} = \frac{1}{n^{1+\varepsilon}}.$$

- Hence $D(s, f)$ is absolutely convergent in the half-plane $\sigma > L$. □

Quantitative estimates

Proposition

Let $D(s,f) = \sum_{n=1}^{\infty} f(n)n^{-s}$ be a Dirichlet series. Assume that

$$\left| \sum_{x < n \leq y} f(n) \right| \leq M y^{\alpha} \quad \text{for all } 0 < x < y,$$

for some $\alpha \geq 0$ and $M > 0$ independent of x and y .

- ▶ Then $D(s,f)$ converges in the half-plane $\sigma > \alpha$.
- ▶ Furthermore, we have in this half-plane

$$|D(s,f)| \leq \frac{M|s|}{\sigma - \alpha}, \quad \text{and} \quad \left| \sum_{x < n \leq y} \frac{f(n)}{n^s} \right| \leq \frac{M}{x^{\sigma - \alpha}} \left(\frac{|s|}{\sigma - \alpha} + 1 \right).$$

Remark

- ▶ The latter statement ensures that $D(s,f)$ converges uniformly in any compact subset of the half plane $\sigma > \alpha$.

Proof

- ▶ Set $A(x) = \sum_{1 \leq n \leq x} f(n)$ and $S(x, y) = A(y) - A(x)$. By partial summation we have

$$\sum_{x < n \leq y} \frac{f(n)}{n^s} = \frac{S(x, y)}{y^s} + s \int_x^y \frac{S(x, u)}{u^{s+1}} du.$$

- ▶ By hypothesis we have $|S(x, y)/y^s| \leq My^{\alpha-\sigma}$, so that $S(x, y)/y^s$ tends to 0 as $y \rightarrow \infty$ in the half-plane $\sigma > \alpha$.
- ▶ Therefore if one of

$$D(s, f) = \sum_{n \in \mathbb{N}} \frac{f(n)}{n^s}, \quad \text{or} \quad s \int_1^\infty \frac{A(u)}{u^{s+1}} du.$$

converges, then so does the other, and the two quantities converge to the same limit.

- ▶ But since

$$\left| \frac{A(u)}{u^{s+1}} \right| \leq \frac{M}{u^{\sigma-\alpha+1}},$$

we infer that the integral converges absolutely for $\sigma > \alpha$, and hence $D(s, f)$ is convergent in this half-plane.

Proof

- ▶ Therefore for all $\sigma > \alpha$, we obtain

$$\sum_{n=1}^{\infty} \frac{f(n)}{n^s} = s \int_1^{\infty} \frac{A(u)}{u^{s+1}} du,$$

and hence

$$|D(s, f)| \leq M|s| \int_1^{\infty} \frac{du}{u^{\sigma-\alpha+1}} = \frac{M|s|}{\sigma-\alpha}.$$

- ▶ Similarly

$$\left| \sum_{x < n \leq y} \frac{f(n)}{n^s} \right| \leq \frac{M}{y^{\sigma-\alpha}} + M|s| \int_x^{\infty} \frac{du}{u^{\sigma-\alpha+1}} \leq \frac{M}{x^{\sigma-\alpha}} \left(\frac{|s|}{\sigma-\alpha} + 1 \right)$$

as required. □

Conditional convergence of Dirichlet series

Proposition

For each Dirichlet series $D(s, f)$, there exists $\sigma_c \in \mathbb{R} \cup \{\pm\infty\}$, called the abscissa of convergence, such that $D(s, f)$ converges in the half-plane $\sigma > \sigma_c$ and does not converge in the half-plane $\sigma < \sigma_c$. Furthermore,

$$\sigma_c \leq \sigma_a \leq \sigma_c + 1.$$

Proof.

- ▶ Suppose first that $D(s, f)$ converges at a point $s_0 = \sigma_0 + it_0$ and fix a small real number $\varepsilon > 0$. By Cauchy's theorem, there exists $x_\varepsilon \geq 1$ such that, for all $y > x \geq x_\varepsilon$, we have

$$\left| \sum_{x < n \leq y} \frac{f(n)}{n^{s_0}} \right| \leq \varepsilon.$$

- ▶ Let $s = \sigma + it \in \mathbb{C}$ such that $\sigma > \sigma_0$. Using the previous proposition with s replaced by $s - s_0$ and $\alpha = 0$, we obtain

$$\left| \sum_{x < n \leq y} \frac{f(n)}{n^s} \right| \leq \varepsilon \left(\frac{|s - s_0|}{\sigma - \sigma_0} + 1 \right).$$

so that $D(s, f)$ converges by Cauchy's theorem.

Proof

- ▶ Now we may proceed as before. Let $S := \{s \in \mathbb{C} : D(s,f) \text{ converges}\}$.
- ▶ If $S = \emptyset$, then we put $\sigma_c = +\infty$. Otherwise define

$$\sigma_c := \inf\{\sigma : s = \sigma + it \in S\}.$$

- ▶ $D(s,f)$ does not converge if $\sigma < \sigma_a$ by the definition of σ_c .
- ▶ On the other hand, there exist points s_0 with σ_0 being arbitrarily close to σ_c at which $D(s,f)$ converges.
- ▶ By above, $D(s,f)$ converges at any point s such that $\sigma > \sigma_0$. Since σ_0 may be chosen as close to σ_c as we want, it follows that $D(s,f)$ converges at any point s such that $\sigma > \sigma_c$.
- ▶ The inequality $\sigma_c \leq \sigma_a \leq \sigma_c + 1$ remains to be shown.
- ▶ The lower bound is obvious. For the upper bound, it suffices to show that if $D(s_0,f)$ converges for some s_0 , then it converges absolutely for all s such that $\sigma > \sigma_0 + 1$. Now if $D(s,f)$ converges at some point s_0 , then $\lim_{n \rightarrow \infty} f(n)n^{-s_0} = 0$. Thus there exists a positive integer n_0 such that, for all $n \geq n_0$, we have $|f(n)| \leq n^{\sigma_0}$, hence $D(s,f)$ is absolutely convergent in the half-plane $\sigma > \sigma_0 + 1$ as required. □

Dirichlet series are holomorphic

Theorem

A Dirichlet series $D(s, f) = \sum_{n=1}^{\infty} f(n) n^{-s}$ defines a holomorphic function of the variable s in the half-plane $\sigma > \sigma_c$, in which $D(s, f)$ can be differentiated term by term so that, for all $s = \sigma + it$ such that $\sigma > \sigma_c$, we have

$$\partial_s^k D(s, f) = \sum_{n=1}^{\infty} \frac{(-1)^k (\log n)^k f(n)}{n^s}, \quad \text{for } k \in \mathbb{Z}_+.$$

Proof.

- We know that the partial sums of a Dirichlet series is a holomorphic function of the variable s that converges uniformly on any compact subset of the half-plane $\sigma > \sigma_c$.
- Therefore, the limit $D(s, f)$ defines a holomorphic function of the variable s in this half-plane.
- Consequently, term-by-term differentiation is allowed, and since $n^{-s} = e^{-s \log n}$, then

$$\partial_s^k n^{-s} = (-1)^k (\log n)^k n^{-s},$$

and the desired formula follows. □

Dirichlet series are determined uniquely

Proposition

Let $D(s, f) = \sum_{n=1}^{\infty} f(n)n^{-s}$ be a Dirichlet series with abscissa of convergence σ_c . If $D(s, f) = 0$ for all s such that $\sigma > \sigma_c$, then $f(n) = 0$ for all $n \in \mathbb{Z}_+$. In particular, if $D(s, f) = D(s, g)$ for all s such that $\sigma > \sigma_c$, then $f(n) = g(n)$ for all $n \in \mathbb{Z}_+$.

Proof.

- ▶ Suppose the contrary and let $k \in \mathbb{Z}_+$ be the smallest integer such that $f(k) \neq 0$. Then $D(s, f) = \sum_{n=k}^{\infty} f(n)n^{-s} = 0$ for all s such that $\sigma > \sigma_c$. Then we have

$$G(s) = k^s D(s, f) = k^s \sum_{n=k}^{\infty} \frac{f(n)}{n^s} = 0.$$

- ▶ Therefore, for all s such that $\sigma > \sigma_c$ we have

$$G(s) = f(k) + \sum_{n=k+1}^{\infty} f(n) \left(\frac{k}{n}\right)^s = 0.$$

- ▶ Hence

$$0 = \lim_{\sigma \rightarrow \infty} G(\sigma) = f(k) \neq 0,$$

which is impossible. □

Singularity on the axis of convergence

Theorem (Landau)

If $f(n) \geq 0$ for all $n \in \mathbb{Z}_+$, and $D(s, f) = \sum_{n=1}^{\infty} f(n) n^{-s}$ is a Dirichlet series with abscissa of convergence $\sigma_c \in \mathbb{R}$, then $D(s, f)$ has a singularity at $s = \sigma_c$.

Proof.

- Without loss of generality, we may assume that $\sigma_c = 0$ and $|D(0, f)| < \infty$. By the Taylor expansion of $D(s, f)$ about $a > 0$ we have

$$D(s, f) = \sum_{k=0}^{\infty} \frac{(s-a)^k}{k!} \partial_s^k D(a, f) = \sum_{k=0}^{\infty} \frac{(s-a)^k}{k!} \sum_{n=1}^{\infty} \frac{(-1)^k (\log n)^k f(n)}{n^a},$$

which must converge at some $s = b < 0$. Hence

$$0 \leq \sum_{k=0}^{\infty} \sum_{n=1}^{\infty} \frac{((a-b) \log n)^k f(n)}{n^a k!} < \infty.$$

- Each term is nonnegative, so the order of summation may be changed

$$\sum_{n=1}^{\infty} \frac{f(n)}{n^a} \sum_{k=0}^{\infty} \frac{((a-b) \log n)^k}{k!} = \sum_{n=1}^{\infty} \frac{f(n)}{n^b},$$

which does not converge, since $b < 0 = \sigma_c$, giving a contradiction. \square

Series of multiplicative functions

Theorem

Let f be a multiplicative function satisfying

$$\sum_{p \in \mathbb{P}} \sum_{k=1}^{\infty} |f(p^k)| < \infty.$$

Then the series $\sum_{n \geq 1} f(n)$ is absolutely convergent and we have

$$\sum_{n=1}^{\infty} f(n) = \prod_{p \in \mathbb{P}} \left(1 + \sum_{k=1}^{\infty} f(p^k) \right).$$

Proof.

- Let us first notice that the inequality $\sum_{p \in \mathbb{P}} \sum_{k=1}^{\infty} |f(p^k)| < \infty$ implies the convergence of the product

$$\prod_{p \in \mathbb{P}} \left(1 + \sum_{k=1}^{\infty} |f(p^k)| \right) \leq \exp \left(\sum_{p \in \mathbb{P}} \sum_{k=1}^{\infty} |f(p^k)| \right) < \infty.$$

Proof

- Now let $x \geq 2$ be a real number and set

$$P(x) = \prod_{p \in \mathbb{P}_{\leq x}} \left(1 + \sum_{k=1}^{\infty} |f(p^k)| \right).$$

- The convergence of the series $\sum_{k=1}^{\infty} |f(p^k)|$ enables us to rearrange the terms when we expand $P(x)$, hence

$$P(x) = \sum_{\text{gpf}(n) \leq x} |f(n)|,$$

where $\text{gpf}(1) = 1$ and $\text{gpf}(n)$ is the greatest prime factor of $n \geq 2$.

- Since each integer $n \leq x$ satisfies the condition $\text{gpf}(n) \leq x$, we have

$$\sum_{1 \leq n \leq x} |f(n)| \leq P(x)$$

- Since $P(x)$ has a finite limit as $x \rightarrow \infty$, the above inequality implies that $\sum_{n \geq 1} |f(n)| < \infty$. The second part of the theorem follows from the inequality

$$\left| \sum_{n=1}^{\infty} f(n) - \prod_{p \in \mathbb{P}_{\leq x}} \left(1 + \sum_{k=1}^{\infty} f(p^k) \right) \right| \leq \sum_{n > x} |f(n)|,$$

and the fact that the right-hand side tends to 0 as $x \rightarrow \infty$. □

Multiplication of Dirichlet series

Theorem

Let f be a multiplicative function and let $s_0 \in \mathbb{C}$. Then the three following assertions are equivalent.

(i) One has

$$\sum_{p \in \mathbb{P}} \sum_{k=1}^{\infty} \frac{|f(p^k)|}{p^{s_0 k}} < \infty.$$

(ii) The series $D(s, f)$ is absolutely convergent in the half-plane $\sigma > \sigma_0$.

(iii) The product

$$\prod_{p \in \mathbb{P}} \left(1 + \sum_{k=1}^{\infty} \frac{f(p^k)}{p^{s k}} \right)$$

is absolutely convergent in the half-plane $\sigma > \sigma_0$. If one of these conditions holds, then we have for all $\sigma > \sigma_0$ that

$$D(s, f) = \prod_{p \in \mathbb{P}} \left(1 + \sum_{k=1}^{\infty} \frac{f(p^k)}{p^{s k}} \right).$$

In particular, if σ_a is the abscissa of absolute convergence of $D(s, f)$, then the last identity holds for all $\sigma > \sigma_a$.