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Summation methods
Proposition
Let x ⩾ 1 be a real number and f , g be two arithmetic functions. Then∑

n∈[x]

( f ⋆ g)(n) =
∑
d∈[x]

f (d)
∑

k∈[x/d]

g(k).

Here we use the convention [x] := Z∩ (0, x] := {1, . . . , ⌊x⌋} for any x ∈ R+.

Proof.
▶ Observe that∑

n∈[x]

( f ⋆ g)(n) =
∑
n∈[x]

∑
d|n

f (d)g(n/d) =
∑
d∈[x]

f (d)
∑
n∈[x]
d|n

g(n/d).

▶ Making the change of variable n = kd in the inner sum and noticing
that n ∈ [x] and d | n is equivalent to k ∈ [x/d], we finally obtain∑

n∈[x]

( f ⋆ g)(n) =
∑
d∈[x]

f (d)
∑

k∈[x/d]

g(k).



Examples
▶ Since τ = 1 ⋆ 1, then by the previous proposition and the easy equality

⌊x⌋ = x + O(1) we obtain∑
n∈[x]

τ(n) =
∑
d∈[x]

∑
k∈[x/d]

1 =
∑
d∈[x]

⌊
x
d

⌋
= x

∑
d∈[x]

1
d
+O(x) = x log x+O(x).

We shall see later how to improve on this result.
▶ Since σ = 1 ⋆ Id, then by the previous proposition we have∑

n∈[x]

σ(n) =
∑
d∈[x]

∑
k∈[x/d]

k =
1
2

∑
d∈[x]

⌊
x
d

⌋(⌊
x
d

⌋
+ 1

)
and using ⌊x⌋ = x + O(1), we obtain∑

n∈[x]

σ(n) =
x2

2

∑
d∈[x]

1
d2 + O

(
x
∑
d∈[x]

1
d

)
.

Since
∑

d∈[x]
1
d2 =

∑∞
d=1

1
d2 −

∑
d>x

1
d2 = ζ(2) + O

( 1
x

)
, we conclude∑

n∈[x]

σ(n) =
x2π2

12
+ O(x log x).



Examples

▶ Since φ = µ ⋆ Id, then by the previous proposition we have∑
n∈[x]

φ(n) =
∑
d∈[x]

µ(d)
∑

k∈[x/d]

k =
1
2

∑
d∈[x]

µ(d)
⌊

x
d

⌋(⌊
x
d

⌋
+ 1

)

and using ⌊x⌋ = x + O(1), we obtain

∑
n∈[x]

φ(n) =
x2

2

∑
d∈[x]

µ(d)
d2 + O

(
x
∑
d∈[x]

1
d

)
.

Since
∑

d∈[x]
µ(d)

d2 =
∑∞

d=1
µ(d)

d2 −
∑

d>x
µ(d)

d2 = ζ(2)−1 + O
( 1

x

)
, we

conclude ∑
n∈[x]

φ(n) =
3x2

π2 + O(x log x).



Examples

▶ Since µ ⋆ 1 = δ, by the previous proposition we obtain

1 =
∑
n∈[x]

(µ ⋆ 1)(n) =
∑
d∈[x]

µ(d)
∑

k∈[x/d]

1 =
∑
d∈[x]

µ(d)
⌊

x
d

⌋
,

which is a very important identity.
▶ Using this identity we obtain that

N
∑

n∈[N]

µ(n)
n

=
∑

n∈[N]

µ(n)
⌊

N
n

⌋
+
∑

n∈[N]

µ(n)
{

N
n

}
= 1+

∑
n∈[N−1]

µ(n)
{

N
n

}

so that∣∣∣∣ ∑
n∈[N]

µ(n)
n

∣∣∣∣ ⩽ 1
N

(
1 +

∑
n∈[N−1]

µ(n)
{

N
n

})
⩽

1 + N − 1
N

= 1.



Dirichlet hyperbola principle
Proposition (Dirichlet hyperbola principle)
Let 1 ⩽ T ⩽ x be real numbers and f , g be two arithmetic functions. Then∑

n∈[x]

( f ⋆ g)(n) =
∑
n∈[T]

f (n)
∑

k∈[x/n]

g(k) +
∑

k∈[x/T]

g(k)
∑

n∈[x/k]

f (n)

−
∑
n∈[T]

f (n)
∑

k∈[x/T]

g(k).

Proof.
Splitting the sum of the right-hand side of of the proposition gives∑

n∈[x]

( f ⋆ g)(n) =
∑

d∈[T]

f (d)
∑

k∈[x/d]

g(k) +
∑

T<d⩽x

f (d)
∑

k∈[x/d]

g(k),

and∑
T<d⩽x

f (d)
∑

k∈[x/d]

g(k) =
∑

k∈[x/T]

g(k)
∑

T<d⩽x/k

f (d)

=
∑

k∈[x/T]

g(k)
( ∑

d∈[x/k]

f (d)−
∑

d∈[T]

f (d)
)
.



Improved bounds for the divisor problem
Theorem (Dirichlet)
For x ∈ R+ sufficiently large, we have∑

n∈[x]

τ(n) = x(log x + 2γ − 1) + O(
√

x).

Proof.
▶ Since τ = 1 ⋆ 1, by the previous proposition with T =

√
x and the

estimate ⌊x⌋ = x + O(1) we obtain∑
n∈[x]

τ(n) = 2
∑

m∈[
√

x]

⌊
x
m

⌋
−

⌊√
x
⌋2

= 2x
∑

m∈[
√

x]

1
m

+ O(
√

x)− (
√

x + O(1))2

= 2x
(
log

√
x + γ + O

(
x−1/2))− x + O(

√
x)

= x log x + x(2γ − 1) + O(
√

x).



Important arithmetic functions involvong primes
1. The von Mangoldt function Λ is defined by

Λ(n) :=

{
log p, if n = pk for some prime p and k ∈ Z+,

0, otherwise
.

2. The first Chebyshev function ϑ is defined for x ⩾ 2 by

ϑ(x) :=
∑

p∈P≤x

log p,

while it is convenient to set ϑ(x) := 0 for 0 < x < 2, where
P≤x := {p ∈ P : p ≤ x} = P ∩ [0, x].

3. The second Chebyshev function ψ is defined for x ⩾ 2 by

ψ(x) :=
∑
n∈[x]

Λ(n),

while it is convenient to set ψ(x) := 0 for 0 < x < 2.
4. The prime counting function π is defined by

π(x) :=
∑

p∈P≤x

1 = #P≤x,

while it is convenient to set π(x) := 0 for 0 < x < 2.



Simple relations
Theorem
For x ≥ 2 we have

ϑ(x) = π(x) log x −
∫ x

2
π(t)

dt
t
,

and
π(x) =

ϑ(x)
log x

+

∫ x

2

ϑ(t)
t log2 t

dt.

Proof.
▶ We have

π(x) =
∑

p∈P≤x

1 =
∑

1<n≤x

1P(n),

and
ϑ(x) =

∑
p∈P≤x

log p =
∑

1<n≤x

1P(n) log n.

▶ If x, y ∈ R+ with ⌊y⌋ < ⌊x⌋, and g ∈ C1([y, x]), then we know∑
y<n≤x

f (n)g(n) = F(x)g(x)− F(y)g(y)−
∫ x

y
F(t)g′(t)dt

where F(t) :=
∑

1≤n≤x f (n).



Proof

▶ Taking f (n) = 1P(n) and g(x) = log x with y = 1 we obtain

ϑ(x) =
∑

1<n≤x

1P(n) log n = π(x) log x − π(1) log 1 −
∫ x

1
π(t)

dt
t
,

which proves the first identity since π(t) = 0 for t < 2.
▶ Next, let f (n) = 1P(n) log n and g(x) = 1/ log x and write

π(x) =
∑

3/2<n≤x

f (n)
1

log n
, ϑ(x) =

∑
1<n≤x

f (n)

▶ Using the summation by parts formula with y = 3/2 we obtain

π(x) =
ϑ(x)
log x

− ϑ(3/2)
log 3/2

+

∫ x

3/2

ϑ(t)
t log2 t

dt

which proves the second identity, since ϑ(t) = 0 if t < 2.



Useful pointwise bounds
Lemma

(i) For all x ∈ R+, we have

ϑ(x) ⩽ ψ(x) ⩽ ϑ(x) + π(
√

x) log x.

(ii) For all x ⩾ 2 and all a > 1, we have

ϑ(x)
log x

⩽ π(x) ⩽
aϑ(x)
log x

+ π
(
x1/a).

Proof of (i).
▶ One may suppose x ⩾ 2. We first have

ψ(x)− ϑ(x) =
∑
pk⩽x

log p −
∑
p⩽x

log p =
∑

p⩽
√

x

⌊ log x
log p ⌋∑
k=2

log p,

so that
ψ(x) ⩾ ϑ(x).



Proof
▶ On the other hand, we have

ψ(x)− ϑ(x) =
∑

p⩽
√

x

⌊ log x
log p ⌋∑
k=2

log p ⩽
∑

p⩽
√

x

log p
⌊
log x
log p

⌋
⩽

∑
p⩽

√
x

log x

= π(
√

x) log x.

Proof of (ii).
▶ We have

π(x) =
∑
p⩽x

1 =
∑
p⩽x

log p
log p

⩾
1

log x

∑
p⩽x

log p =
ϑ(x)
log x

.

▶ For 2 ⩽ T < x, we also have

π(x) =
∑
p⩽T

1 +
∑

T<p⩽x

1 = π(T) +
∑

T<p⩽x

log p
log p

⩽ π(T) +
ϑ(x)
log T

.

and the choice of T = x1/a implies the asserted estimate.



Equivalent forms of the prime number theorem
Theorem
The following relations are logically equivalent:

lim
x→∞

π(x) log x
x

= 1. (A)

lim
x→∞

ϑ(x)
x

= 1. (B)

lim
x→∞

ψ(x)
x

= 1. (C)

Proof.
▶ We know that

ϑ(x)
x

⩽
ψ(x)

x
⩽
ϑ(x)

x
+
π(
√

x) log x
x

.

▶ Also

lim
x→∞

π(
√

x) log x
x

= 0

▶ Hence the equivalence between (B) and (C) follows.



Proof

▶ For every a > 1 know that

ϑ(x)
x

⩽
π(x) log x

x
⩽

aϑ(x)
x

+
π
(
x1/a

)
log x

x
.

▶ For every a > 1 we also know that

lim
x→∞

π
(
x1/a

)
log x

x
= 0.

▶ Then

lim
x→∞

ϑ(x)
x

⩽ lim
x→∞

π(x) log x
x

⩽ lim
x→∞

aϑ(x)
x

.

▶ Since a > 1 is arbitrary, we obtain equivalence between (A) and (B).
This completes the proof of the theorem.



Dirichlet theorem, upper bound
Theorem
For all x ⩾ 1, we have

ϑ(x) ⩽ x log 4.

Proof.
▶ We first prove by induction that, for all n ∈ Z+, we have

ϑ(n) ⩽ n log 4.

▶ This inequality is clearly true for n ∈ [3]. If n ⩾ 4 is even, we have

ϑ(n) = ϑ(n − 1) ⩽ (n − 1) log 4 < n log 4n.

▶ Suppose now that n ⩾ 5 is odd and set n = 2m + 1 with m ∈ Z+. The
idea is to use the fact that the product∏

m+1<p⩽2m+1

p

divides the binomial coefficient
(2m+1

m

)
.



Proof
▶ To see this, observe that p ∈ P such that m + 1 < p ⩽ 2m + 1 divides

(2m + 1)! because of p ⩽ 2m + 1, but does not divide m!(m + 1)!
because of p > m + 1, so that∏

m+1<p⩽2m+1

p divides (2m + 1)! = m!(m + 1)!
(

2m + 1
m

)
and since the product is coprime to m!(m + 1)! the claim follows.

▶ Taking logarithms, we then obtain

ϑ(2m + 1)− ϑ(m + 1) =
∑

m+1<p⩽2m+1

log p ⩽ log

(
2m + 1

m

)
.

▶ Using Stirling’s formula we have
(2m+1

m

)
≤ 2m+1

m+1
4m

√
πm ≤ 4m, thus

ϑ(2m+1) ≤ m log 4+ϑ(m+1) ≤ m log 4+(m+1) log 4 = (2m+1) log 4,

where we have used the induction hypothesis applied to ϑ(m + 1).
▶ The lemma follows from

ϑ(x) = ϑ(⌊x⌋) ≤ ⌊x⌋ log 4 ⩽ x log 4.

The proof is complete.



Dirichlet theorem, lower bound
Theorem
For all x ⩾ 1537, we have

ϑ(x) >
x

log 4
.

Proof.
▶ We first notice that the function f defined by

f (x) = ⌊x⌋ −
⌊

x
2

⌋
−
⌊

x
3

⌋
−
⌊

x
5

⌋
+

⌊
x

30

⌋
,

is periodic of period 30, since ⌊x + n⌋ = ⌊x⌋+ n for any n ∈ Z.
▶ Moreover, for x /∈ Z, we have

f (30 − x) = 1 − f (x),

since ⌊−x⌋ = −⌊x⌋ − 1 for x /∈ Z.
▶ An inspection of its values when x ∈ [1, 15) allows us to infer that f (x)

only takes the values 0 or 1 if x /∈ Z.
▶ Since f is continuous on the right, we also have f (x) = 0 or 1 when

x ∈ Z. By periodicity, we infer that f (x) = 0 or 1 for all x ∈ R.



Proof
▶ Hence we obtain

ψ(x) ⩾
∑
n⩽x

Λ(n)f
( x

n

)
=
∑
n⩽x

Λ(n)
(⌊

x
n

⌋
−
⌊

x
2n

⌋
−
⌊

x
3n

⌋
−
⌊

x
5n

⌋
+

⌊
x

30n

⌋)

=
∑
n⩽x

Λ(n)
⌊

x
n

⌋
−
∑

n⩽x/2

Λ(n)
⌊

x
2n

⌋
−
∑

n⩽x/3

Λ(n)
⌊

x
3n

⌋

−
∑

n⩽x/5

Λ(n)
⌊

x
5n

⌋
+
∑

n⩽x/30

Λ(n)
⌊

x
30n

⌋
,

where we used the fact that ⌊x/kn⌋ = 0 whenever n > x/k for
k ∈ {2, 3, 5, 30}.

▶ By a simplified form of Striling’s formula we know for all x ≥ 1 that∑
n∈[x]

log n = x log x − x + 1 + R(x), where 0 ≤ R(x) ≤ log x.

▶ Since Λ ⋆ 1 = log, then we conclude that∑
n∈[x]

log n =
∑
n∈[x]

∑
d|n

Λ(d) =
∑
d∈[x]

Λ(d)
∑

k∈[x/d]

=
∑
d∈[x]

Λ(d)
⌊

x
d

⌋
.



Proof
▶ Hence for x ≥ 1, we have∑

d∈[x]

Λ(d)
⌊

x
d

⌋
= x log x − x + 1 + R(x), where 0 ≤ R(x) ≤ log x.

▶ Inserting this bounds to the previous formula we obtain

ψ(x) ⩾x log x − x + 1 −
( x

2
log

x
2
− x

2
+ 1 + log

x
2

)
−
( x

3
log

x
3
− x

3
+ 1 + log

x
3

)
−
( x

5
log

x
5
− x

5
+ 1 + log

x
5

)
+
( x

30
log

x
30

− x
30

+ 1
)

=x log
(

27/1533/1051/6
)
− 3 log x + log 30 − 1.

▶ Using the estimate ψ(x) ≤ ϑ(x) + π(
√

x) log x we obtain the desired
lower bound

ϑ(x) ≥ x log
(

27/1533/1051/6
)
− (

√
x + 3) log x ≥ x

log 4
,

whenever x ∈ R+ is sufficiently large. This completes the proof.



Bertrand’s postulate

Note that
log

(
27/1533/1051/6

)
≈ 0.92129 . . . ,

which is a very good lower bound. It was sufficient to allow Chebyshev to
prove Bertrand’s famous postulate.

Theorem
Let n ∈ Z+. Then the interval (n, 2n] contains a prime number.

Proof.
▶ We check numerically the result for n ∈ [768] and we suppose n ⩾ 769.
▶ Using Chebyshev’s upper and lower bounds we deduce∑

n<p⩽2n

log p = ϑ(2n)− ϑ(n) > n
(

2
log 4

− log 4
)
> 0.

▶ This shows that (n, 2n] ∩ P ̸= ∅, which implies the desired result.



Chebyshev’s estimates for the prime counting function
Theorem
For all x ⩾ 5, we have

1
log 4

x
log x

< π(x) <
(

2 +
1

log 4

)
x

log x
.

Proof.
▶ For all integers n ∈ {5, . . . , 1537} one can verify that

1
log 4

n + 1
log n

< π(n) <
(

2 +
1

log 4

)
n

log(n + 1)

which implies the desired inequalities for all x ∈ [5, 1537].
▶ Suppose that x ⩾ 1537. Using the upper bound for π(x) with a = 3/2

we obtain
π(x) ≤ 3ϑ(x)

2 log x
+ π(x2/3) ≤ 3x log 4

2 log x
+ x2/3.

▶ The inequality log x < 3e−1.55x1/3, valid for all x ⩾ 1537, implies that

π(x) <
3x log 4
2 log x

+
3e−1.55x
log x

<

(
2 +

1
log 4

)
x

log x
,

as required.



More refined bounds
Theorem

(i) For all x ⩾ 25, we have

ψ(x) < ϑ(x) +
(

4 +
1

log 2

)√
x,

π(x) <
3

2 log x

(
ϑ(x) +

(
2 +

1
log 4

)
x2/3

)
.

(ii) For all x ⩾ 1, we have
ψ(x) < 2x.

(iii) Let pn be the nth prime number. Then, for all integers n ⩾ 3, we have

1
2

n log n < pn < 2n log n.

The lower bound for pn immediately implies that∑
p∈P

1
p
=

∑
n∈Z+

1
pn

= ∞.



Proof
Proof of (i) and (ii).
▶ We know that

ϑ(x) ⩽ ψ(x) ⩽ ϑ(x) + π(
√

x) log x.

▶ From the previous theorem

π(x) <
(

2 +
1

log 4

)
x

log x
.

▶ Hence

ψ(x) ⩽ ϑ(x) + π(
√

x) log x ≤ ϑ(x) + 2
(

2 +
1

log 4

)√
x.

▶ The inequality ψ(x) < 2x is first numerically checked for all integers
n ∈ [1, 100] and for x > 100 we invoke the previous bound.

▶ We know that
ϑ(x)
log x

⩽ π(x) ⩽
3ϑ(x)
2 log x

+ π
(
x2/3)

▶ Again by the previous theorem we conclude that

π(x) <
3

2 log x

(
ϑ(x) +

(
2 +

1
log 4

)
x2/3
)
.



Proof
Proof of (iii).
▶ We first check the inequalities for n ∈ {3, . . . , 337}. Suppose n ⩾ 338

so that pn ⩾ 2273. The proof rests on the fact that π (pn) = n.
▶ For the lower bound, we use the second upper bound of (i) above, the

inequality x2/3 < x/13 valid for all x ⩾ 2273 and the trivial inequality
pn > n, which imply the desired lower bound

n = π (pn) <
3pn

2 log pn

{
log 4 +

1
13

(
2 +

1
log 4

)}
<

2pn

log pn
<

2pn

log n
.

▶ For the upper bound, we use the inequality log x
x1−log 2 <

1
log 4 valid for all

x ⩾ 2273 (applied with x = pn), and the lower bound for π(x) giving

log pn

p1−log 2
n

<
1

log 4
<
π (pn) log pn

pn
=

n log pn

pn

▶ Hence pn < n1/ log 2, and log pn <
log n
log 2 . Thus, the upper bound follows

n = π (pn) >
1

log 4
pn

log pn
>

pn

2 log n
.



Mertens first theorem
Theorem
For all x ⩾ 2, we have ∑

p⩽x

log p
p

= log x + O(1).

Proof.
▶ We first notice that∑

d⩽x

Λ(d)
d

=
∑
p⩽x

log p
p

+
∑
pk⩽x
k⩾2

log p
pk .

▶ The second sum is∑
pk⩽x
k⩾2

log p
pk ⩽

∑
p⩽

√
x

log p
∞∑

k=2

1
pk =

∑
p⩽

√
x

log p
p(p − 1)

= O(1).



Proof
▶ We have proved that∑

p⩽x

log p
p

=
∑
d⩽x

Λ(d)
d

+ O(1).

▶ We know that for x ≥ 1, we have∑
d∈[x]

Λ(d)
⌊

x
d

⌋
= x log x − x + 1 + R(x), where 0 ≤ R(x) ≤ log x.

▶ Hence, we have

x log x + O(x) =
∑
d∈[x]

Λ(d)
⌊

x
d

⌋
= x

∑
d∈[x]

Λ(d)
d

+ O(ψ(x)).

▶ Since ψ(x) < 2x, we obtain

x
∑
d∈[x]

Λ(d)
d

= x log x + O(x)

▶ Therefore the desired conclusion follows∑
d⩽x

Λ(d)
d

= log x + O(1).



Mertens second theorem
Theorem
There exists a constant B ∈ R+ such that for all x ≥ 2 we have∑

p≤x

1
p
= log log x + B + O

(
1

log x

)
.

Proof.
▶ We can write ∑

p≤x

1
p
=

∑
p≤x

log p
p

1
log p

=
∑

2≤n≤x

f (n)g(n),

where f (n) = 1P(n) log n
n and g(t) = 1

log t
▶ Let

F(t) =
∑
n≤t

f (n) =
∑
p≤t

log p
p

.

▶ Then F(t) = 0 for t < 2. By the first Mertens theorem we have

F(t) = log t + r(t), where r(t) = O(1).



Proof
▶ Therefore, the integral

∫∞
2

r(t)
t(log t)2 dt converges absolutely, and∫ ∞

x

r(t)dt
t(log t)2 = O

(
1

log x

)
.

▶ By partial summation, we obtain∑
p≤x

1
p
=
∑
n≤x

f (n)g(n) = F(x)g(x)−
∫ x

2
F(t)g′(t)dt

=
log x + r(x)

log x
+

∫ x

2

log t + r(t)
t(log t)2 dt

=1 + O
(

1
log x

)
+

∫ x

2

dt
t log t

+

∫ x

2

r(t)
t(log t)2 dt

= log log x + 1 − log log 2 +

∫ ∞

2

r(t)
t(log t)2 dt −

∫ ∞

x

r(t)
t(log t)2 dt + O

(
1

log x

)
= log log x + B + O

(
1

log x

)
,

where

B = 1 − log log 2 +

∫ ∞

2

r(t)
t(log t)2 dt.



Mertens third theorem
Theorem
For all x ⩾ e, we have∏

p⩽x

(
1 − 1

p

)
=

e−γ

log x

(
1 + O

(
1

log x

))
.

Remark: (Exercise)
In the second Mertens theorem one can show that

B := γ +
∑
p∈P

(
log

(
1 − 1

p

)
+

1
p

)
≈ 0.2614972128 . . . ,

which is called the Mertens constant. We will use this fact below.

Proof.
▶ We have

log
∏
p⩽x

(
1 − 1

p

)−1

=
∑
p⩽x

log

(
1 − 1

p

)−1

=
∑
p⩽x

1
p
+
∑
p⩽x

(
log

(
1 − 1

p

)−1

− 1
p

)
.



Proof
▶ Using the Taylor series expansion we conclude that

log

(
1 − 1

p

)−1

− 1
p
⩽

1
2p(p − 1)

⩽
1
p2 .

▶ By the last bound we have
∑

p>x
1
p2 = O

( 1
x

)
.

▶ By the second Mertens theorem we may write

log
∏
p⩽x

(
1 − 1

p

)−1

=
∑
p⩽x

1
p
−
∑
p∈P

(
log

(
1 − 1

p

)
+

1
p

)
+ O

(
1
x

)

= log log x + γ + O
(

1
log x

)
.

▶ Using eh = 1 + O(h) for all h → 0 finally gives

∏
p⩽x

(
1 − 1

p

)−1

= eγ log x
(

1 + O
(

1
log x

))
,

which is easily seen to be equivalent to the desired formula.



Improved estimates for the Euler totient function
Theorem
Let ε > 0 be given. Then there exists an Nε ∈ Z+ such that

φ(n) ≥ (1 − ε)
e−γn

log log n
for all n ≥ Nε.

Proof.
▶ Take any n > 1 and write

φ(n)
n

=
∏
p|n

(
1 − 1

p

)
= P1(n)P2(n),

where

P1(n) =
∏
p|n

p≤log n

(
1 − 1

p

)
, and P2(n) =

∏
p|n

p>log n

(
1 − 1

p

)
.

▶ Then

P2(n) >
∏
p|n

p>log n

(
1 − 1

log n

)
=

(
1 − 1

log n

)f (n)

,

where f (n) is the number of primes which divide n and exceed log n.



Proof
▶ Since

n ≥
∏
p|n

p >
∏
p|n

p>log n

p ≥ (log n)f (n)

we find log n > f (n) log log n, so f (n) < log n/ log log n.
▶ Since 1 − (1/ log n) < 1, we obtain

P2(n) >
(

1 − 1
log n

)log n/ log log n

=

((
1 − 1

log n

)log n
)1/ log log n

.

▶ Now limu→∞
(
1 − 1

u

)u
= e−1, so we can conclude that

P2(n) > 1 + o(1) as n → ∞.

▶ Therefore, there exists Nε ∈ Z+ such that for every n ≥ N(ε) we have

φ(n)
n

= P1(n)P2(n) > (1 + o(1))
∏
p|n

p≤log n

(
1 − 1

p

)

≥ (1 + o(1))
∏

p≤log n

(
1 − 1

p

)
= (1 + o(1))

e−γ

log log n
≥ (1 − ε)

e−γ

log log n
.

▶ This completes the proof.



Improved bounds for the divisor function
Theorem
Let ε > 0 be given. Then there exists an Nε ∈ Z+ such that

τ(n) < 2(1+ε) log n
log log n = n

(1+ε) log 2
log log n for all n ≥ Nε.

In particular, for every δ > 0, we obtain

τ(n) = o
(
nδ
)
.

Proof.
▶ Write n = pai

1 · · · pak
k , so that τ(n) =

∏k
i=1 (ai + 1).

▶ We split the product into two parts, separating those prime divisors
< f (n) from those ≥ f (n), where f (n) will be specified later.

▶ Then τ(n) = P1(n)P2(n) where

P1(n) =
∏

pi<f (n)

(ai + 1) ,

P2(n) =
∏

pi≥f (n)

(ai + 1) .



Proof

▶ In the product P2(n) we use the inequality (a + 1) ≤ 2a to obtain
P2(n) ≤ 2S(n), where

S(n) =
k∑

i=1
pi≥f (n)

ai.

▶ Now

n =

k∏
i=1

pai
i ≥

∏
pi≥f (n)

pai
i ≥

∏
pi≥f (n)

f (n)ai = f (n)S(n),

hence

log n ≥ S(n) log f (n) ⇐⇒ S(n) ≤ log n
log f (n)

.

▶ This gives us
P2(n) ≤ 2log n/ log f (n).



Proof
▶ To estimate P1(n) we write

P1(n) = exp

 ∑
pi<f (n)

log (ai + 1)


▶ We have n ≥ pai

i ≥ 2ai , hence

log n ≥ ai log 2 ⇐⇒ ai ≤ log n/ log 2.

Therefore, for sufficiently large n ∈ Z+, we have

1 + ai ≤ 1 +
log n
log 2

< (log n)2

▶ Thus n ≥ N0 for some N0 ∈ Z+ implies

log (1 + ai) < log(log n)2 = 2 log log n.

▶ This gives us

P1(n) < exp

(
2 log log n

∑
pi<f (n)

1
)

≤ exp(2π( f (n)) log log n).



Proof
▶ Setting c = 6/ log 2 and using π(x) < 3x/ log x, we obtain

P1(n) < exp

(
6f (n) log log n

log f (n)

)
= 2

cf(n) log log n
log f(n) .

▶ Then we deduce τ(n) = P1(n)P2(n) < 2g(n), where

g(n) =
log n + cf (n) log log n

log f (n)
=

log n
log log n

1 + cf (n) log log n
log n

log f (n)
log log n

.

▶ Now we choose f (n) to make f (n) log log n/ log n → 0 and also to
make log f (n)/ log log n → 1 as n → ∞. For this it suffices to take

f (n) =
log n

(log log n)2 .

▶ Therefore, there exists Nε ∈ Z+ such that for every n ≥ N(ε) we have

g(n) =
log n

log log n
1 + o(1)
1 + o(1)

=
log n

log log n
(1 + o(1)) < (1 + ε)

log n
log log n

.

▶ This proves the theorem.


