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Summation methods

Proposition

Let x > 1 be a real number and f, g be two arithmetic functions. Then

D (Fre)m) =3 fd) > s

nex] de|x] k€(x/d]

Here we use the convention [x] := ZN (0,x] := {1,...,|x]|} foranyx € Ry.

Proof.
» Observe that

S(Fxe)m) =D fld)gln/d) =D f(d) > g(n/d).

n€x] n€lx] din defx] n€ex]
din

» Making the change of variable n = kd in the inner sum and noticing
that n € [x] and d | n is equivalent to k € [x/d], we finally obtain

D (Fxe)m =2 fd) ) sl 0

nex] de|x] k€ ([x/d)



Examples

» Since 7 = 1 x 1, then by the previous proposition and the easy equality
[x] = x4 O(1) we obtain

Z Z Z 1= Z { J :xz $+0(x) = xlogx+0(x).
nex] de[x] k€[x/d) de|x] de|x]

We shall see later how to improve on this result.
» Since 0 = 1 x Id, then by the previous proposition we have

gl

and using |x] = x + O(1), we obtain

o =13 4+ (xdez[;];)-

nelx] dE [x]
Since ey 7= a1 7~ 2oase @ = C(2) + 0 (), we conclude
2 2
Z o(n) = % + O(xlogx).



Examples

» Since p = p * Id, then by the previous proposition we have

yr=3u 3 k=3 3 w3 ([2) )

née x| defx] ke[x/d defx]

and using |x] = x + O(1), we obtain

S gl Z+0( > 1)

ne|x] dE[x defx]
Since Zde[x} % = Zi] Mtgzd) - d>x /“'[5;1) = <(2)71 + o ()lc)v we

conclude

Z o(n) = % + O(xlogx).

nex]



Examples

» Since px 1 = 4, by the previous proposition we obtain
EONCES WIS SEED W]
nex] delx] kG[Jc/d] dex]

which is a very important identity.
» Using this identity we obtain that

g g2l gl £ ol

n
n€[N] ne€[N ne[N] ne[N—1]
so that
w(n) 1 N 1+N—1
PV |« = _
> e <j(ie X wn{T}) < =

n€[N]



Dirichlet hyperbola principle

Proposition (Dirichlet hyperbola principle)
Let 1 < T < x be real numbers and f, g be two arithmetic functions. Then

> (frg)n Zf ook + Y gk) Y f(n)

ne x| k€E(x/n] k€ [x/T) ne€x/k
- an > slk
nelT) k€x/T]
Proof.

Splitting the sum of the right-hand side of of the proposition gives

D(fxe)m) =D fld) Y g+ Y fld) > glk)

n€lfx] de(T) ke(x/d] T<d<x ke(x/d]
and
DYof@ Y sl = > ek Y f@)
T<d<x kelx/d| kex/T) T<d<x/k

S g<k>( S ) - Zﬂd)). 0
de|T)

k€ x/T) d€[x/k]



Improved bounds for the divisor problem

Theorem (Dirichlet)
For x € Ry sufficiently large, we have

Z 7(n) = x(logx + 2y — 1) + O(V/x).

néex]

Proof.

» Since 7 = 1 x 1, by the previous proposition with T = /x and the
estimate |x] = x 4+ O(1) we obtain

Srm-2 Y | 2|~ 1vaf

nelx] me (VA
=20 Y 4 0(/R) - (Va+ 0())
me[/x]
— 2 (log\/);—&- v+ O(x—‘/2)) —x+ 0(V/x)
= xlogx +x(2y — 1) + O(v/x). O



Important arithmetic functions involvong primes
1. The von Mangoldt function A is defined by

Aln) logp, if n = p* for some prime p and k € Z ,
n).= .
0, otherwise

2. The first Chebyshev function ¥ is defined for x > 2 by
=Y logp,
PEP<,

while it is convenient to set J(x) := 0 for 0 < x < 2, where
Poy:={peP:p<x}=PnNJ0,xl.
3. The second Chebyshev function %) is defined for x > 2 by

=Y An)
nex]

while it is convenient to set ¢(x) := 0 for 0 < x < 2.
4. The prime counting function 7 is defined by

= > 1=#P<,
PEP<,

while it is convenient to set w(x) := 0 for 0 < x < 2.



Simple relations

Theorem
For x > 2 we have

19(x):7r(x)logx—/ OE
2
and 9 <
= P[00,
log x , tlog’t
Proof.
» We have
)= Y 1= > 1ls(n),
PeP<, 1<n<x
and

P(x) = Z logp = Z 1p(n) logn.

PEP < 1<n<x

> Ifx,y € Ry with |y| < |x],and g € C'([y,x]), then we know

> fn)gn) = Fx)g(x) — F()g(y) — /XF(l)g’(l)dt

y<n<x

where F(t) := Zlgngxf(”)~



Proof

» Taking f(n) = 1p(n) and g(x) = logx with y = 1 we obtain

@
t

)

9x) = 3 1o(n)logn = n(x) logx — (1) log 1 — /lxw(t)

1<n<x

which proves the first identity since () = 0 for r < 2.
> Next, let f(n) = 1p(n) logn and g(x) = 1/log x and write

= Y ), =3 f)

logn’
3/2<n<x 8 I<n<x

> Using the summation by parts formula with y = 3/2 we obtain

9w 96 [ 90
m(x) = logx log3/2 + /3/2 tlogztdt

which proves the second identity, since 9(7) = 0if r < 2.



Useful pointwise bounds

Lemma
(i) Forallx € R, we have

I(x) < $(x) < V() + 7(v3) logx.
(i1) Forallx > 2 and all a > 1, we have

I(x)
log x

ad(x)
log x

w(xl/“).

<m(x) <

Proof of (i).
» One may suppose x > 2. We first have

log
Lroes )

=) logp—> logp=»_ > logp,

pF<x p<x p<V/x k=2

so that

P(x) = 9(x).



Proof

» On the other hand, we have

1
Lioes

v =06 = 30 3 towp < Y towp| 24| < 3 o

p<Va k=2 P<VA logp P<VA

= 7(v/x) log x. O

Proof of (ii).
» We have

logp J(x)
Z Z logp logx Z logp = logx’

PSX PSX
» For2 < T < x, we also have

] 9(x)
S+ Y=+ Y 2P +IOE;T.

lo
p<T T<p<Lx T<p<x gp

and the choice of T = x'/¢ implies the asserted estimate.



Equivalent forms of the prime number theorem

Theorem
The following relations are logically equivalent:
lim m(x) log x

X—00 X

=1

Proof.
» We know that

> Also |
lim TR 108Y

X—00 X

» Hence the equivalence between (B) and (C) follows.

@A)

(B)

©)



Proof

» For every a > 1 know that

P(x) < 7(x) log x < ad(x) n m(x!/9) logx.
X X x X

» For every a > 1 we also know that

1/a 1
7r(x ) ogx —0

lim
X— 00 X
» Then 9 ) 9
lim ) < lim w < lim ad(x)
X— 00 X X— 00 X X— 00 X

» Since a > 1 is arbitrary, we obtain equivalence between (A) and (B).
This completes the proof of the theorem. O



Dirichlet theorem, upper bound

Theorem
For all x > 1, we have
¥(x) < xlog4.

Proof.
> We first prove by induction that, for all n € Z_., we have
9(n) < nlog4.
» This inequality is clearly true for n € [3]. If n > 4 is even, we have
dn)=9(mn—1) < (n—1)log4 < nlog4".

» Suppose now thatn > 5Sisodd and setn = 2m + 1 withm € Z . The
idea is to use the fact that the product

I »r
m+1<p<2m+1

2m+l).

divides the binomial coefficient ( .



Proof

To see this, observe that p € P such thatm + 1 < p < 2m + 1 divides
(2m + 1)! because of p < 2m + 1, but does not divide m!(m + 1)!
because of p > m + 1, so that

2m+ 1
[I » divides (@m+1)!=ml(m+1) < mt >
m+1<p<2m+1 m

and since the product is coprime to m!(m + 1)! the claim follows.
Taking logarithms, we then obtain

Y2m+1)—d(m+1) = Z logp < log <2mm—|— 1).

m+1<p<2m+1

Using Stirling’s formula we have (2m+l) < 2}:3:1 j:? < 4™ thus

9(2m+1) < mlogd+9(m+1) < mlogd+(m+1)log4 = (2m+1)log4,

where we have used the induction hypothesis applied to ¢(m + 1).
The lemma follows from

I(x) =9(|x]) < |x]log4 < xlog4.
The proof is complete. OJ



Dirichlet theorem, lower bound

Theorem

For all x > 1537, we have
X

Proof.

> We first notice that the function f defined by

vt -5 L8]

is periodic of period 30, since |x + n| = |x]| + n forany n € Z.
» Moreover, for x ¢ Z, we have

fB0—x) =1-f(x),

since | —x| = —|x] — 1 forx ¢ Z.
» An inspection of its values when x € [1, 15) allows us to infer that f(x)
only takes the values 0 or 1 if x ¢ Z.

» Since f is continuous on the right, we also have f(x) = 0 or 1 when
x € Z. By periodicity, we infer that f(x) = 0 or 1 for all x € R.



Proof

» Hence we obtain

o> S0 (5) =S (2] - 5]~ [5]- 2]+ [s5])

- g A(n) m - ng;z/\(n) binJ - n§3A(n) {%J
0 {S%J + 57 A UEJ
n<x/5 n<x/30

where we used the fact that |x/kn| = 0 whenever n > x/k for
ke {2,3,5,30}.
» By a simplified form of Striling’s formula we know for all x > 1 that

Z logn =xlogx —x+ 1+ R(x), where 0<R(x)<logux.
nelx]
» Since A x 1 = log, then we conclude that

S gn= 340 =A@ ¥ =3 a3

n€elfx] n€lx] din de(x] ke[x/d]  dex]



Proof

» Hence for x > 1, we have

Z A(d {J =xlogx —x+ 1+ R(x), where 0<R(x)<logx.
dex]

» Inserting this bounds to the previous formula we obtain

P(x) 2xlogx —x+1— (%log%—%—&—l—l—log%)

—<{10 R N T {)—< log = —
3373 53 gs 5
IESPERE I

30 230 30

—xlog (27/1533/1051/6) ~3logx + log30 — 1.

X
141 7)
+ —|—og5

> Using the estimate ¢ (x) < ¥(x) + 7(1/x) log x we obtain the desired
lower bound

Y(x) > xlog (27/1533/1051/6) — (Vx+3)logx > @’

whenever x € R, is sufficiently large. This completes the proof. O



Bertrand’s postulate
Note that
log (27/1533/1051/6) ~0.92129. ..,
which is a very good lower bound. It was sufficient to allow Chebyshev to
prove Bertrand’s famous postulate.

Theorem
Let n € Z. Then the interval (n,2n] contains a prime number.

Proof.
» We check numerically the result for n € [768] and we suppose n > 769.
» Using Chebyshev’s upper and lower bounds we deduce

2
Z logp = 9(2n) — J(n) > n (10g4 — 10g4> > 0.

n<p<2n

» This shows that (n,2n] NP # (), which implies the desired result.



Chebyshev’s estimates for the prime counting function

Theorem
For all x > 5, we have

1 x < () < 2+L x
log 4 log x log4 ) logx’

Proof.
» For all integers n € {5,...,1537} one can verify that

1 n+1
log4 logn

n
10g4) log(n+1)
which implies the desired inequalities for all x € [5, 1537].

> Suppose that x > 1537. Using the upper bound for 7(x) with a = 3/2
we obtain

< m(n) < <2+

39(x)

2/3 < 3X10g4 2/3
_210gx+7r(x ) T

— 2logx

m(x)

> The inequality log x < 3e¢~'-33x!/3, valid for all x > 1537, implies that

2(x) < 3xlog4 n 3¢ %y < (24 1 X
2logx log x log4 ) logx’

as required. O



More refined bounds

Theorem
(1) Forall x > 25, we have

m(x) < ZIng (ﬁ(x) + (2 + 10;4> x2/3) .

(ii) Forall x > 1, we have

P(x) < 2x.

(iii) Let p, be the nth prime number. Then, for all integers n > 3, we have
1
inlogn < pn < 2nlogn.

The lower bound for p, immediately implies that

LD

PEIP’ ne€ly



Proof
Proof of (i) and (ii).

> We know that
9(x) < $(x) < (x) + 7(V7) log.x.
» From the previous theorem

1 X
) < (2+ log4) logx’

» Hence

(x) < 9() + (V) logx < D(x) +2 (z + ﬁ) VA
» The inequality ¢(x) < 2x is first numerically checked for all integers
n € [1,100] and for x > 100 we invoke the previous bound.

» We know that
) _

< < 39(x)
log x

2/3
7T()C)\Zlogx ﬂ(x )

» Again by the previous theorem we conclude that

3 1 2/3
m(x) < Tlogx (19()6) + (2+ 710g‘4> X ) . O




Proof
Proof of (iii).

> We first check the inequalities for n € {3,...,337}. Suppose n > 338
so that p, > 2273. The proof rests on the fact that 7 (p,) = n.

» For the lower bound, we use the second upper bound of (i) above, the
inequality x*/3 < x /13 valid for all x > 2273 and the trivial inequality
pn > n, which imply the desired lower bound

3pn 1 1 2D, 2Dy,
n=m(p,y) < P {10g4+13(2+ >}< L

2logpn log4 logp, logn
» For the upper bound, we use the inequality x}f%{; ; < lo]g ; valid for all

x > 2273 (applied with x = p,), and the lower bound for 7(x) giving

log pn I _ 7(pa)logp, _ nlogpy
piloe2 " log4 Pn Pn
> Hence p, < n'/1°82 and logp, < }gg; Thus, the upper bound follows
1 Pn Pn

n=m(py) > O

> .
log4logp, =~ 2logn



Mertens first theorem

Theorem
For all x > 2, we have

1
Z o8P _ logx + O(1).

p<x

Proof.
» We first notice that

A(d lo lo
ST T

d<x e P P

» The second sum is

1 1
ST IE S S Y = 3 S o)

P p<V/X k= 2 p<V/x
>2



Proof

» We have proved that

Zbﬁ=2¥+o(1).

pPX p d<x

» We know that for x > 1, we have

dex]

» Hence, we have

xlogx + O(x ZA { J Z ¥+0(w(x))-

defx] delx]

> Since ¥ (x) < 2x, we obtain

A(d

X Z % = xlogx + O(x)
de|x]

» Therefore the desired conclusion follows

Z%d):logx—f— o(1). O

d<x

S AW H:xlogx—x+1+1e(x>, where 0 < R(x) < logx.



Mertens second theorem

Theorem
There exists a constant B € R such that for all x > 2 we have

1 1
Zf =loglogx+ B+ O () .
p log x

p<x
Proof.
» We can write
1

log p _ Deln
S-S S st

p<x p<x 2<n<x

where f(n) = 1p(n) lof"
> Let

(1) = 1557
logp:
=3 plw) = >

n<t p<t

» Then F(t) = 0 for t < 2. By the first Mertens theorem we have

F(t) =logt+ r(t), where r(r)=0(1).



Proof

> Therefore, the integral [, 12(3;);)2‘” converges absolutely, and

/°° r(t)dt 1
=0 .

. t(logr)? log x

» By partial summation, we obtain

Z =3 fln)g(n) = F(x)g(x) - / CF()g (1

p<x n<x

_logx +r(x) /x logt+ r(t) .
~ logx , t(logr)?

1 T odt ()
=1 — dt
+0 <logx) +/2 tlogt Jr/2 t(log1)?

= () = ()
=logl 1 —loglog?2 dt —
ostog 1 —loglos2-+ [ = [

1
=loglogx+ B+ O <logx> ,

where

< ()
B=1-—1loglog?2 dt. J
08708 +/2 H{log 1)?

dt

1

log

X

)



Mertens third theorem

Theorem
For all x > e, we have

-
H<1—1>: ¢ <1+0
p log x

p<X

1
logx/) )"
Remark: (Exercise)

In the second Mertens theorem one can show that
Bi=v+>_ <10g (1 - 1) + 1) ~ 0.2614972128.. . .,
p p
peP
which is called the Mertens constant. We will use this fact below.

Proof.
» We have



Proof

» Using the Taylor series expansion we conclude that

' 1 1
log(1—— ——-< ;77— <5
p p 2(p—-1) " p
> By the last bound we have 30 - = O (3) -
» By the second Mertens theorem we may write

I 2) - Eh K (D))o

p<x pP<X peP p

1
:loglogx—&—fH—O( )
log x

» Using e" = 1 + O(h) for all & — 0 finally gives

(1) =ee(teo i)

p<X

which is easily seen to be equivalent to the desired formula.

)



Improved estimates for the Euler totient function

Theorem
Let € > 0 be given. Then there exists an N. € Z, such that

e 7

o(n) > (1 —¢) forall n> N..

loglogn
Proof.
> Take any n > 1 and write

@ — H (1 — l%) = P(n)P2(n),

pln

where
P(n)= ] (1—1), and  P,(n)= ][] (1—1).
p 14
pln pln
p<llogn p>logn
» Then
1 f(n)
P =(1-
2(n) > H < logn> ( logn> ’
p>logn

where f(n) is the number of primes which divide n and exceed log n.



Proof

> Since
n>[Ip> T[ p= (ogny®
pln pln
p>logn

we find logn > f(n)loglogn, so f(n) < logn/loglogn.
» Since 1 — (1/logn) < 1, we obtain

1 logn/loglogn 1 log n 1/loglogn
P 1— — 1— )
> (n) > ( logn) (( logn) >

» Now lim,_, o (1 — %)u = ¢!, so we can conclude that

Py(n)>1+4+0(l1) as n— .

» Therefore, there exists N € Z. such that for every n > N(g) we have

o(n) = Pi(n)P2(n) > (1 + o(1)) H (1 - l)

n

> (1+0(1) [] <1—;>:(1+o(1))7

p<logn

» This completes the proof. O



Improved bounds for the divisor function

Theorem
Let € > 0 be given. Then there exists an N. € Z, such that

(1+¢) log?2
7(n) < 24O gt = gy TosTogn forall n>N..

In particular, for every § > 0, we obtain

T(n) =o (n‘;) .
Proof.
» Write n = p{ - - - p*, so that 7(n) = HLI (a; +1).

» We split the product into two parts, separating those prime divisors
< f(n) from those > f(n), where f(n) will be specified later.

» Then 7(n) = P (n)P,(n) where



Proof

» In the product P, (n) we use the inequality (a + 1) < 2 to obtain
P>(n) <250, where

pi>f(n)
> Now .
n— lel > H Pl > H f(n)* _f(n)S(n)7
i=1 pi>f(n) pi>f(n)
hence
logn
logn > S(n)logf(n — Sn) < .
() log () (1) < ot

» This gives us
Pz(ﬂ) < zlogn/ logf(n).



Proof

» To estimate P;(n) we write

Py(n) = exp Z log (a; + 1)
pi<f(n)

> We have n > p{ > 2% hence
logn > a;log2 <= a; <logn/log2.
Therefore, for sufficiently large n € Z, we have

logn ’
I4+a<1+—=—<(l
+a +10g2<(0gn)

» Thus n > Ny for some Ny € Z, implies

log (1 + a;) < log(logn)* = 2loglogn.
» This gives us

Pi(n) < exp (2 loglogn Z 1) < exp(27(f(n))loglogn).
pi<f(n)



Proof

> Setting ¢ = 6/1og 2 and using 7(x) < 3x/logx, we obtain

logf(n)

» Then we deduce 7(n) = Py (n)Py(n) < 28", where

P(n) < exp (

1 + ¢ loglogn

logn + ¢f(n)loglogn logn Tog n
g(n) = = log f(n)
logf(n) log log n 3
loglogn

» Now we choose f(n) to make f(n) log logn/logn — 0 and also to
make logf(n)/loglogn — 1 as n — oo. For this it suffices to take

_ logn
fln) = (loglogn)?’

» Therefore, there exists N € Z. such that for every n > N(g) we have

logn

logn 1+ o(1 logn
o(n) = %8 (1) _ log

= = 1 1 1
loglogn 1+ o(1) loglogn( to(l)) <(1+e)

loglogn’

» This proves the theorem. OJ



