

Analytic Number Theory

Lecture 4

Mariusz Mirek
Rutgers University

Padova, March 18, 2025.

Supported by the NSF grant DMS-2154712,
and the CAREER grant DMS-2236493.

Summation methods

Proposition

Let $x \geq 1$ be a real number and f, g be two arithmetic functions. Then

$$\sum_{n \in [x]} (f \star g)(n) = \sum_{d \in [x]} f(d) \sum_{k \in [x/d]} g(k).$$

Here we use the convention $[x] := \mathbb{Z} \cap (0, x] := \{1, \dots, \lfloor x \rfloor\}$ for any $x \in \mathbb{R}_+$.

Proof.

- ▶ Observe that

$$\sum_{n \in [x]} (f \star g)(n) = \sum_{n \in [x]} \sum_{d|n} f(d)g(n/d) = \sum_{d \in [x]} f(d) \sum_{\substack{n \in [x] \\ d|n}} g(n/d).$$

- ▶ Making the change of variable $n = kd$ in the inner sum and noticing that $n \in [x]$ and $d | n$ is equivalent to $k \in [x/d]$, we finally obtain

$$\sum_{n \in [x]} (f \star g)(n) = \sum_{d \in [x]} f(d) \sum_{k \in [x/d]} g(k). \quad \square$$

Examples

- ▶ Since $\tau = \mathbf{1} \star \mathbf{1}$, then by the previous proposition and the easy equality $\lfloor x \rfloor = x + O(1)$ we obtain

$$\sum_{n \in [x]} \tau(n) = \sum_{d \in [x]} \sum_{k \in [x/d]} 1 = \sum_{d \in [x]} \left\lfloor \frac{x}{d} \right\rfloor = x \sum_{d \in [x]} \frac{1}{d} + O(x) = x \log x + O(x).$$

We shall see later how to improve on this result.

- ▶ Since $\sigma = \mathbf{1} \star \text{Id}$, then by the previous proposition we have

$$\sum_{n \in [x]} \sigma(n) = \sum_{d \in [x]} \sum_{k \in [x/d]} k = \frac{1}{2} \sum_{d \in [x]} \left\lfloor \frac{x}{d} \right\rfloor \left(\left\lfloor \frac{x}{d} \right\rfloor + 1 \right)$$

and using $\lfloor x \rfloor = x + O(1)$, we obtain

$$\sum_{n \in [x]} \sigma(n) = \frac{x^2}{2} \sum_{d \in [x]} \frac{1}{d^2} + O\left(x \sum_{d \in [x]} \frac{1}{d}\right).$$

Since $\sum_{d \in [x]} \frac{1}{d^2} = \sum_{d=1}^{\infty} \frac{1}{d^2} - \sum_{d > x} \frac{1}{d^2} = \zeta(2) + O\left(\frac{1}{x}\right)$, we conclude

$$\sum_{n \in [x]} \sigma(n) = \frac{x^2 \pi^2}{12} + O(x \log x).$$

Examples

- Since $\varphi = \mu \star \text{Id}$, then by the previous proposition we have

$$\sum_{n \in [x]} \varphi(n) = \sum_{d \in [x]} \mu(d) \sum_{k \in [x/d]} k = \frac{1}{2} \sum_{d \in [x]} \mu(d) \left\lfloor \frac{x}{d} \right\rfloor \left(\left\lfloor \frac{x}{d} \right\rfloor + 1 \right)$$

and using $\lfloor x \rfloor = x + O(1)$, we obtain

$$\sum_{n \in [x]} \varphi(n) = \frac{x^2}{2} \sum_{d \in [x]} \frac{\mu(d)}{d^2} + O\left(x \sum_{d \in [x]} \frac{1}{d}\right).$$

Since $\sum_{d \in [x]} \frac{\mu(d)}{d^2} = \sum_{d=1}^{\infty} \frac{\mu(d)}{d^2} - \sum_{d>x} \frac{\mu(d)}{d^2} = \zeta(2)^{-1} + O\left(\frac{1}{x}\right)$, we conclude

$$\sum_{n \in [x]} \varphi(n) = \frac{3x^2}{\pi^2} + O(x \log x).$$

Examples

- ▶ Since $\mu \star \mathbf{1} = \delta$, by the previous proposition we obtain

$$1 = \sum_{n \in [x]} (\mu \star \mathbf{1})(n) = \sum_{d \in [x]} \mu(d) \sum_{k \in [x/d]} 1 = \sum_{d \in [x]} \mu(d) \left\lfloor \frac{x}{d} \right\rfloor,$$

which is a very important identity.

- ▶ Using this identity we obtain that

$$N \sum_{n \in [N]} \frac{\mu(n)}{n} = \sum_{n \in [N]} \mu(n) \left\lfloor \frac{N}{n} \right\rfloor + \sum_{n \in [N]} \mu(n) \left\{ \frac{N}{n} \right\} = 1 + \sum_{n \in [N-1]} \mu(n) \left\{ \frac{N}{n} \right\}$$

so that

$$\left| \sum_{n \in [N]} \frac{\mu(n)}{n} \right| \leq \frac{1}{N} \left(1 + \sum_{n \in [N-1]} \mu(n) \left\{ \frac{N}{n} \right\} \right) \leq \frac{1 + N - 1}{N} = 1.$$

Dirichlet hyperbola principle

Proposition (Dirichlet hyperbola principle)

Let $1 \leq T \leq x$ be real numbers and f, g be two arithmetic functions. Then

$$\begin{aligned} \sum_{n \in [x]} (f \star g)(n) &= \sum_{n \in [T]} f(n) \sum_{k \in [x/n]} g(k) + \sum_{k \in [x/T]} g(k) \sum_{n \in [x/k]} f(n) \\ &\quad - \sum_{n \in [T]} f(n) \sum_{k \in [x/T]} g(k). \end{aligned}$$

Proof.

Splitting the sum of the right-hand side of the proposition gives

$$\sum_{n \in [x]} (f \star g)(n) = \sum_{d \in [T]} f(d) \sum_{k \in [x/d]} g(k) + \sum_{T < d \leq x} f(d) \sum_{k \in [x/d]} g(k),$$

and

$$\begin{aligned} \sum_{T < d \leq x} f(d) \sum_{k \in [x/d]} g(k) &= \sum_{k \in [x/T]} g(k) \sum_{T < d \leq x/k} f(d) \\ &= \sum_{k \in [x/T]} g(k) \left(\sum_{d \in [x/k]} f(d) - \sum_{d \in [T]} f(d) \right). \end{aligned} \quad \square$$

Improved bounds for the divisor problem

Theorem (Dirichlet)

For $x \in \mathbb{R}_+$ sufficiently large, we have

$$\sum_{n \in [x]} \tau(n) = x(\log x + 2\gamma - 1) + O(\sqrt{x}).$$

Proof.

- Since $\tau = \mathbf{1} \star \mathbf{1}$, by the previous proposition with $T = \sqrt{x}$ and the estimate $\lfloor x \rfloor = x + O(1)$ we obtain

$$\begin{aligned} \sum_{n \in [x]} \tau(n) &= 2 \sum_{m \in [\sqrt{x}]} \left\lfloor \frac{x}{m} \right\rfloor - \lfloor \sqrt{x} \rfloor^2 \\ &= 2x \sum_{m \in [\sqrt{x}]} \frac{1}{m} + O(\sqrt{x}) - (\sqrt{x} + O(1))^2 \\ &= 2x \left(\log \sqrt{x} + \gamma + O(x^{-1/2}) \right) - x + O(\sqrt{x}) \\ &= x \log x + x(2\gamma - 1) + O(\sqrt{x}). \end{aligned}$$

□

Important arithmetic functions involving primes

1. The von Mangoldt function Λ is defined by

$$\Lambda(n) := \begin{cases} \log p, & \text{if } n = p^k \text{ for some prime } p \text{ and } k \in \mathbb{Z}_+, \\ 0, & \text{otherwise} \end{cases}.$$

2. The first Chebyshev function ϑ is defined for $x \geq 2$ by

$$\vartheta(x) := \sum_{p \in \mathbb{P}_{\leq x}} \log p,$$

while it is convenient to set $\vartheta(x) := 0$ for $0 < x < 2$, where

$$\mathbb{P}_{\leq x} := \{p \in \mathbb{P} : p \leq x\} = \mathbb{P} \cap [0, x].$$

3. The second Chebyshev function ψ is defined for $x \geq 2$ by

$$\psi(x) := \sum_{n \in [x]} \Lambda(n),$$

while it is convenient to set $\psi(x) := 0$ for $0 < x < 2$.

4. The prime counting function π is defined by

$$\pi(x) := \sum_{p \in \mathbb{P}_{\leq x}} 1 = \#\mathbb{P}_{\leq x},$$

while it is convenient to set $\pi(x) := 0$ for $0 < x < 2$.

Simple relations

Theorem

For $x \geq 2$ we have

$$\vartheta(x) = \pi(x) \log x - \int_2^x \pi(t) \frac{dt}{t},$$

and

$$\pi(x) = \frac{\vartheta(x)}{\log x} + \int_2^x \frac{\vartheta(t)}{t \log^2 t} dt.$$

Proof.

► We have

$$\pi(x) = \sum_{p \in \mathbb{P}_{\leq x}} 1 = \sum_{1 < n \leq x} \mathbf{1}_{\mathbb{P}}(n),$$

and

$$\vartheta(x) = \sum_{p \in \mathbb{P}_{\leq x}} \log p = \sum_{1 < n \leq x} \mathbf{1}_{\mathbb{P}}(n) \log n.$$

► If $x, y \in \mathbb{R}_+$ with $\lfloor y \rfloor < \lfloor x \rfloor$, and $g \in C^1([y, x])$, then we know

$$\sum_{y < n \leq x} f(n)g(n) = F(x)g(x) - F(y)g(y) - \int_y^x F(t)g'(t)dt$$

where $F(t) := \sum_{1 \leq n \leq x} f(n)$.

Proof

- ▶ Taking $f(n) = \mathbf{1}_{\mathbb{P}}(n)$ and $g(x) = \log x$ with $y = 1$ we obtain

$$\vartheta(x) = \sum_{1 < n \leq x} \mathbf{1}_{\mathbb{P}}(n) \log n = \pi(x) \log x - \pi(1) \log 1 - \int_1^x \pi(t) \frac{dt}{t},$$

which proves the first identity since $\pi(t) = 0$ for $t < 2$.

- ▶ Next, let $f(n) = \mathbf{1}_{\mathbb{P}}(n) \log n$ and $g(x) = 1/\log x$ and write

$$\pi(x) = \sum_{3/2 < n \leq x} f(n) \frac{1}{\log n}, \quad \vartheta(x) = \sum_{1 < n \leq x} f(n)$$

- ▶ Using the summation by parts formula with $y = 3/2$ we obtain

$$\pi(x) = \frac{\vartheta(x)}{\log x} - \frac{\vartheta(3/2)}{\log 3/2} + \int_{3/2}^x \frac{\vartheta(t)}{t \log^2 t} dt$$

which proves the second identity, since $\vartheta(t) = 0$ if $t < 2$. □

Useful pointwise bounds

Lemma

(i) For all $x \in \mathbb{R}_+$, we have

$$\vartheta(x) \leq \psi(x) \leq \vartheta(x) + \pi(\sqrt{x}) \log x.$$

(ii) For all $x \geq 2$ and all $a > 1$, we have

$$\frac{\vartheta(x)}{\log x} \leq \pi(x) \leq \frac{a\vartheta(x)}{\log x} + \pi(x^{1/a}).$$

Proof of (i).

► One may suppose $x \geq 2$. We first have

$$\psi(x) - \vartheta(x) = \sum_{p^k \leq x} \log p - \sum_{p \leq x} \log p = \sum_{p \leq \sqrt{x}} \sum_{k=2}^{\lfloor \frac{\log x}{\log p} \rfloor} \log p,$$

so that

$$\psi(x) \geq \vartheta(x).$$

Proof

- On the other hand, we have

$$\begin{aligned}\psi(x) - \vartheta(x) &= \sum_{p \leq \sqrt{x}} \sum_{k=2}^{\lfloor \frac{\log x}{\log p} \rfloor} \log p \leq \sum_{p \leq \sqrt{x}} \log p \left\lfloor \frac{\log x}{\log p} \right\rfloor \leq \sum_{p \leq \sqrt{x}} \log x \\ &= \pi(\sqrt{x}) \log x. \quad \square\end{aligned}$$

Proof of (ii).

- We have

$$\pi(x) = \sum_{p \leq x} 1 = \sum_{p \leq x} \frac{\log p}{\log p} \geq \frac{1}{\log x} \sum_{p \leq x} \log p = \frac{\vartheta(x)}{\log x}.$$

- For $2 \leq T < x$, we also have

$$\pi(x) = \sum_{p \leq T} 1 + \sum_{T < p \leq x} 1 = \pi(T) + \sum_{T < p \leq x} \frac{\log p}{\log p} \leq \pi(T) + \frac{\vartheta(x)}{\log T}.$$

and the choice of $T = x^{1/a}$ implies the asserted estimate. \square

Equivalent forms of the prime number theorem

Theorem

The following relations are logically equivalent:

$$\lim_{x \rightarrow \infty} \frac{\pi(x) \log x}{x} = 1. \quad (\text{A})$$

$$\lim_{x \rightarrow \infty} \frac{\vartheta(x)}{x} = 1. \quad (\text{B})$$

$$\lim_{x \rightarrow \infty} \frac{\psi(x)}{x} = 1. \quad (\text{C})$$

Proof.

- We know that

$$\frac{\vartheta(x)}{x} \leq \frac{\psi(x)}{x} \leq \frac{\vartheta(x)}{x} + \frac{\pi(\sqrt{x}) \log x}{x}.$$

- Also

$$\lim_{x \rightarrow \infty} \frac{\pi(\sqrt{x}) \log x}{x} = 0$$

- Hence the equivalence between (B) and (C) follows.

Proof

- ▶ For every $a > 1$ know that

$$\frac{\vartheta(x)}{x} \leq \frac{\pi(x) \log x}{x} \leq \frac{a\vartheta(x)}{x} + \frac{\pi(x^{1/a}) \log x}{x}.$$

- ▶ For every $a > 1$ we also know that

$$\lim_{x \rightarrow \infty} \frac{\pi(x^{1/a}) \log x}{x} = 0.$$

- ▶ Then

$$\lim_{x \rightarrow \infty} \frac{\vartheta(x)}{x} \leq \lim_{x \rightarrow \infty} \frac{\pi(x) \log x}{x} \leq \lim_{x \rightarrow \infty} \frac{a\vartheta(x)}{x}.$$

- ▶ Since $a > 1$ is arbitrary, we obtain equivalence between (A) and (B).

This completes the proof of the theorem. □

Dirichlet theorem, upper bound

Theorem

For all $x \geq 1$, we have

$$\vartheta(x) \leq x \log 4.$$

Proof.

- We first prove by induction that, for all $n \in \mathbb{Z}_+$, we have

$$\vartheta(n) \leq n \log 4.$$

- This inequality is clearly true for $n \in [3]$. If $n \geq 4$ is even, we have

$$\vartheta(n) = \vartheta(n-1) \leq (n-1) \log 4 < n \log 4^n.$$

- Suppose now that $n \geq 5$ is odd and set $n = 2m + 1$ with $m \in \mathbb{Z}_+$. The idea is to use the fact that the product

$$\prod_{m+1 < p \leq 2m+1} p$$

divides the binomial coefficient $\binom{2m+1}{m}$.

Proof

- To see this, observe that $p \in \mathbb{P}$ such that $m + 1 < p \leq 2m + 1$ divides $(2m + 1)!$ because of $p \leq 2m + 1$, but does not divide $m!(m + 1)!$ because of $p > m + 1$, so that

$$\prod_{m+1 < p \leq 2m+1} p \text{ divides } (2m+1)! = m!(m+1)! \binom{2m+1}{m}$$

and since the product is coprime to $m!(m + 1)!$ the claim follows.

- Taking logarithms, we then obtain

$$\vartheta(2m+1) - \vartheta(m+1) = \sum_{m+1 < p \leq 2m+1} \log p \leq \log \binom{2m+1}{m}.$$

- Using Stirling's formula we have $\binom{2m+1}{m} \leq \frac{2m+1}{m+1} \frac{4^m}{\sqrt{\pi m}} \leq 4^m$, thus

$$\vartheta(2m+1) \leq m \log 4 + \vartheta(m+1) \leq m \log 4 + (m+1) \log 4 = (2m+1) \log 4,$$

where we have used the induction hypothesis applied to $\vartheta(m + 1)$.

- The lemma follows from

$$\vartheta(x) = \vartheta(\lfloor x \rfloor) \leq \lfloor x \rfloor \log 4 \leq x \log 4.$$

The proof is complete. □

Dirichlet theorem, lower bound

Theorem

For all $x \geq 1537$, we have

$$\vartheta(x) > \frac{x}{\log 4}.$$

Proof.

- We first notice that the function f defined by

$$f(x) = \lfloor x \rfloor - \left\lfloor \frac{x}{2} \right\rfloor - \left\lfloor \frac{x}{3} \right\rfloor - \left\lfloor \frac{x}{5} \right\rfloor + \left\lfloor \frac{x}{30} \right\rfloor,$$

is periodic of period 30, since $\lfloor x+n \rfloor = \lfloor x \rfloor + n$ for any $n \in \mathbb{Z}$.

- Moreover, for $x \notin \mathbb{Z}$, we have

$$f(30-x) = 1 - f(x),$$

since $\lfloor -x \rfloor = -\lfloor x \rfloor - 1$ for $x \notin \mathbb{Z}$.

- An inspection of its values when $x \in [1, 15)$ allows us to infer that $f(x)$ only takes the values 0 or 1 if $x \notin \mathbb{Z}$.
- Since f is continuous on the right, we also have $f(x) = 0$ or 1 when $x \in \mathbb{Z}$. By periodicity, we infer that $f(x) = 0$ or 1 for all $x \in \mathbb{R}$.

Proof

- Hence we obtain

$$\begin{aligned}\psi(x) &\geq \sum_{n \leq x} \Lambda(n) f\left(\frac{x}{n}\right) = \sum_{n \leq x} \Lambda(n) \left(\left\lfloor \frac{x}{n} \right\rfloor - \left\lfloor \frac{x}{2n} \right\rfloor - \left\lfloor \frac{x}{3n} \right\rfloor - \left\lfloor \frac{x}{5n} \right\rfloor + \left\lfloor \frac{x}{30n} \right\rfloor \right) \\ &= \sum_{n \leq x} \Lambda(n) \left\lfloor \frac{x}{n} \right\rfloor - \sum_{n \leq x/2} \Lambda(n) \left\lfloor \frac{x}{2n} \right\rfloor - \sum_{n \leq x/3} \Lambda(n) \left\lfloor \frac{x}{3n} \right\rfloor \\ &\quad - \sum_{n \leq x/5} \Lambda(n) \left\lfloor \frac{x}{5n} \right\rfloor + \sum_{n \leq x/30} \Lambda(n) \left\lfloor \frac{x}{30n} \right\rfloor,\end{aligned}$$

where we used the fact that $\lfloor x/kn \rfloor = 0$ whenever $n > x/k$ for $k \in \{2, 3, 5, 30\}$.

- By a simplified form of Striling's formula we know for all $x \geq 1$ that

$$\sum_{n \in [x]} \log n = x \log x - x + 1 + R(x), \quad \text{where} \quad 0 \leq R(x) \leq \log x.$$

- Since $\Lambda \star \mathbf{1} = \log$, then we conclude that

$$\sum_{n \in [x]} \log n = \sum_{n \in [x]} \sum_{d|n} \Lambda(d) = \sum_{d \in [x]} \Lambda(d) \sum_{k \in [x/d]} = \sum_{d \in [x]} \Lambda(d) \left\lfloor \frac{x}{d} \right\rfloor.$$

Proof

- ▶ Hence for $x \geq 1$, we have

$$\sum_{d \in [x]} \Lambda(d) \left\lfloor \frac{x}{d} \right\rfloor = x \log x - x + 1 + R(x), \quad \text{where} \quad 0 \leq R(x) \leq \log x.$$

- ▶ Inserting this bounds to the previous formula we obtain

$$\begin{aligned} \psi(x) &\geq x \log x - x + 1 - \left(\frac{x}{2} \log \frac{x}{2} - \frac{x}{2} + 1 + \log \frac{x}{2} \right) \\ &\quad - \left(\frac{x}{3} \log \frac{x}{3} - \frac{x}{3} + 1 + \log \frac{x}{3} \right) - \left(\frac{x}{5} \log \frac{x}{5} - \frac{x}{5} + 1 + \log \frac{x}{5} \right) \\ &\quad + \left(\frac{x}{30} \log \frac{x}{30} - \frac{x}{30} + 1 \right) \\ &= x \log \left(2^{7/15} 3^{3/10} 5^{1/6} \right) - 3 \log x + \log 30 - 1. \end{aligned}$$

- ▶ Using the estimate $\psi(x) \leq \vartheta(x) + \pi(\sqrt{x}) \log x$ we obtain the desired lower bound

$$\vartheta(x) \geq x \log \left(2^{7/15} 3^{3/10} 5^{1/6} \right) - (\sqrt{x} + 3) \log x \geq \frac{x}{\log 4},$$

whenever $x \in \mathbb{R}_+$ is sufficiently large. This completes the proof. □

Bertrand's postulate

Note that

$$\log \left(2^{7/15} 3^{3/10} 5^{1/6} \right) \approx 0.92129 \dots,$$

which is a very good lower bound. It was sufficient to allow Chebyshev to prove Bertrand's famous postulate.

Theorem

Let $n \in \mathbb{Z}_+$. Then the interval $(n, 2n]$ contains a prime number.

Proof.

- We check numerically the result for $n \in [768]$ and we suppose $n \geq 769$.
- Using Chebyshev's upper and lower bounds we deduce

$$\sum_{n < p \leq 2n} \log p = \vartheta(2n) - \vartheta(n) > n \left(\frac{2}{\log 4} - \log 4 \right) > 0.$$

- This shows that $(n, 2n] \cap \mathbb{P} \neq \emptyset$, which implies the desired result.

□

Chebyshev's estimates for the prime counting function

Theorem

For all $x \geq 5$, we have

$$\frac{1}{\log 4} \frac{x}{\log x} < \pi(x) < \left(2 + \frac{1}{\log 4}\right) \frac{x}{\log x}.$$

Proof.

- For all integers $n \in \{5, \dots, 1537\}$ one can verify that

$$\frac{1}{\log 4} \frac{n+1}{\log n} < \pi(n) < \left(2 + \frac{1}{\log 4}\right) \frac{n}{\log(n+1)}$$

which implies the desired inequalities for all $x \in [5, 1537]$.

- Suppose that $x \geq 1537$. Using the upper bound for $\pi(x)$ with $a = 3/2$ we obtain

$$\pi(x) \leq \frac{3\vartheta(x)}{2\log x} + \pi(x^{2/3}) \leq \frac{3x \log 4}{2\log x} + x^{2/3}.$$

- The inequality $\log x < 3e^{-1.55}x^{1/3}$, valid for all $x \geq 1537$, implies that

$$\pi(x) < \frac{3x \log 4}{2\log x} + \frac{3e^{-1.55}x}{\log x} < \left(2 + \frac{1}{\log 4}\right) \frac{x}{\log x},$$

as required. □

More refined bounds

Theorem

(i) For all $x \geq 25$, we have

$$\begin{aligned}\psi(x) &< \vartheta(x) + \left(4 + \frac{1}{\log 2}\right) \sqrt{x}, \\ \pi(x) &< \frac{3}{2 \log x} \left(\vartheta(x) + \left(2 + \frac{1}{\log 4}\right) x^{2/3} \right).\end{aligned}$$

(ii) For all $x \geq 1$, we have

$$\psi(x) < 2x.$$

(iii) Let p_n be the n th prime number. Then, for all integers $n \geq 3$, we have

$$\frac{1}{2}n \log n < p_n < 2n \log n.$$

The lower bound for p_n immediately implies that

$$\sum_{p \in \mathbb{P}} \frac{1}{p} = \sum_{n \in \mathbb{Z}_+} \frac{1}{p_n} = \infty.$$

Proof

Proof of (i) and (ii).

- We know that

$$\vartheta(x) \leq \psi(x) \leq \vartheta(x) + \pi(\sqrt{x}) \log x.$$

- From the previous theorem

$$\pi(x) < \left(2 + \frac{1}{\log 4}\right) \frac{x}{\log x}.$$

- Hence

$$\psi(x) \leq \vartheta(x) + \pi(\sqrt{x}) \log x \leq \vartheta(x) + 2 \left(2 + \frac{1}{\log 4}\right) \sqrt{x}.$$

- The inequality $\psi(x) < 2x$ is first numerically checked for all integers $n \in [1, 100]$ and for $x > 100$ we invoke the previous bound.

- We know that

$$\frac{\vartheta(x)}{\log x} \leq \pi(x) \leq \frac{3\vartheta(x)}{2 \log x} + \pi(x^{2/3})$$

- Again by the previous theorem we conclude that

$$\pi(x) < \frac{3}{2 \log x} \left(\vartheta(x) + \left(2 + \frac{1}{\log 4}\right) x^{2/3} \right).$$

□

Proof

Proof of (iii).

- We first check the inequalities for $n \in \{3, \dots, 337\}$. Suppose $n \geq 338$ so that $p_n \geq 2273$. The proof rests on the fact that $\pi(p_n) = n$.
- For the lower bound, we use the second upper bound of (i) above, the inequality $x^{2/3} < x/13$ valid for all $x \geq 2273$ and the trivial inequality $p_n > n$, which imply the desired lower bound

$$n = \pi(p_n) < \frac{3p_n}{2 \log p_n} \left\{ \log 4 + \frac{1}{13} \left(2 + \frac{1}{\log 4} \right) \right\} < \frac{2p_n}{\log p_n} < \frac{2p_n}{\log n}.$$

- For the upper bound, we use the inequality $\frac{\log x}{x^{1-\log 2}} < \frac{1}{\log 4}$ valid for all $x \geq 2273$ (applied with $x = p_n$), and the lower bound for $\pi(x)$ giving

$$\frac{\log p_n}{p_n^{1-\log 2}} < \frac{1}{\log 4} < \frac{\pi(p_n) \log p_n}{p_n} = \frac{n \log p_n}{p_n}$$

- Hence $p_n < n^{1/\log 2}$, and $\log p_n < \frac{\log n}{\log 2}$. Thus, the upper bound follows

$$n = \pi(p_n) > \frac{1}{\log 4} \frac{p_n}{\log p_n} > \frac{p_n}{2 \log n}. \quad \square$$

Mertens first theorem

Theorem

For all $x \geq 2$, we have

$$\sum_{p \leq x} \frac{\log p}{p} = \log x + O(1).$$

Proof.

► We first notice that

$$\sum_{d \leq x} \frac{\Lambda(d)}{d} = \sum_{p \leq x} \frac{\log p}{p} + \sum_{\substack{p^k \leq x \\ k \geq 2}} \frac{\log p}{p^k}.$$

► The second sum is

$$\sum_{\substack{p^k \leq x \\ k \geq 2}} \frac{\log p}{p^k} \leq \sum_{p \leq \sqrt{x}} \log p \sum_{k=2}^{\infty} \frac{1}{p^k} = \sum_{p \leq \sqrt{x}} \frac{\log p}{p(p-1)} = O(1).$$

Proof

- We have proved that

$$\sum_{p \leq x} \frac{\log p}{p} = \sum_{d \leq x} \frac{\Lambda(d)}{d} + O(1).$$

- We know that for $x \geq 1$, we have

$$\sum_{d \in [x]} \Lambda(d) \left\lfloor \frac{x}{d} \right\rfloor = x \log x - x + 1 + R(x), \quad \text{where} \quad 0 \leq R(x) \leq \log x.$$

- Hence, we have

$$x \log x + O(x) = \sum_{d \in [x]} \Lambda(d) \left\lfloor \frac{x}{d} \right\rfloor = x \sum_{d \in [x]} \frac{\Lambda(d)}{d} + O(\psi(x)).$$

- Since $\psi(x) < 2x$, we obtain

$$x \sum_{d \in [x]} \frac{\Lambda(d)}{d} = x \log x + O(x)$$

- Therefore the desired conclusion follows

$$\sum_{d \leq x} \frac{\Lambda(d)}{d} = \log x + O(1). \quad \square$$

Mertens second theorem

Theorem

There exists a constant $B \in \mathbb{R}_+$ such that for all $x \geq 2$ we have

$$\sum_{p \leq x} \frac{1}{p} = \log \log x + B + O\left(\frac{1}{\log x}\right).$$

Proof.

- We can write

$$\sum_{p \leq x} \frac{1}{p} = \sum_{p \leq x} \frac{\log p}{p} \frac{1}{\log p} = \sum_{2 \leq n \leq x} f(n)g(n),$$

where $f(n) = \mathbf{1}_{\mathbb{P}}(n) \frac{\log n}{n}$ and $g(t) = \frac{1}{\log t}$

- Let

$$F(t) = \sum_{n \leq t} f(n) = \sum_{p \leq t} \frac{\log p}{p}.$$

- Then $F(t) = 0$ for $t < 2$. By the first Mertens theorem we have

$$F(t) = \log t + r(t), \quad \text{where} \quad r(t) = O(1).$$

Proof

► Therefore, the integral $\int_2^\infty \frac{r(t)}{t(\log t)^2} dt$ converges absolutely, and

$$\int_x^\infty \frac{r(t)dt}{t(\log t)^2} = O\left(\frac{1}{\log x}\right).$$

► By partial summation, we obtain

$$\begin{aligned} \sum_{p \leq x} \frac{1}{p} &= \sum_{n \leq x} f(n)g(n) = F(x)g(x) - \int_2^x F(t)g'(t)dt \\ &= \frac{\log x + r(x)}{\log x} + \int_2^x \frac{\log t + r(t)}{t(\log t)^2} dt \\ &= 1 + O\left(\frac{1}{\log x}\right) + \int_2^x \frac{dt}{t \log t} + \int_2^x \frac{r(t)}{t(\log t)^2} dt \\ &= \log \log x + 1 - \log \log 2 + \int_2^\infty \frac{r(t)}{t(\log t)^2} dt - \int_x^\infty \frac{r(t)}{t(\log t)^2} dt + O\left(\frac{1}{\log x}\right) \\ &= \log \log x + B + O\left(\frac{1}{\log x}\right), \end{aligned}$$

where

$$B = 1 - \log \log 2 + \int_2^\infty \frac{r(t)}{t(\log t)^2} dt. \quad \square$$

Mertens third theorem

Theorem

For all $x \geq e$, we have

$$\prod_{p \leq x} \left(1 - \frac{1}{p}\right) = \frac{e^{-\gamma}}{\log x} \left(1 + O\left(\frac{1}{\log x}\right)\right).$$

Remark: (Exercise)

In the second Mertens theorem one can show that

$$B := \gamma + \sum_{p \in \mathbb{P}} \left(\log \left(1 - \frac{1}{p}\right) + \frac{1}{p} \right) \approx 0.2614972128\dots,$$

which is called the Mertens constant. We will use this fact below.

Proof.

► We have

$$\begin{aligned} \log \prod_{p \leq x} \left(1 - \frac{1}{p}\right)^{-1} &= \sum_{p \leq x} \log \left(1 - \frac{1}{p}\right)^{-1} \\ &= \sum_{p \leq x} \frac{1}{p} + \sum_{p \leq x} \left(\log \left(1 - \frac{1}{p}\right)^{-1} - \frac{1}{p} \right). \end{aligned}$$

Proof

- Using the Taylor series expansion we conclude that

$$\log \left(1 - \frac{1}{p}\right)^{-1} - \frac{1}{p} \leq \frac{1}{2p(p-1)} \leq \frac{1}{p^2}.$$

- By the last bound we have $\sum_{p>x} \frac{1}{p^2} = O\left(\frac{1}{x}\right)$.
- By the second Mertens theorem we may write

$$\begin{aligned} \log \prod_{p \leq x} \left(1 - \frac{1}{p}\right)^{-1} &= \sum_{p \leq x} \frac{1}{p} - \sum_{p \in \mathbb{P}} \left(\log \left(1 - \frac{1}{p}\right) + \frac{1}{p} \right) + O\left(\frac{1}{x}\right) \\ &= \log \log x + \gamma + O\left(\frac{1}{\log x}\right). \end{aligned}$$

- Using $e^h = 1 + O(h)$ for all $h \rightarrow 0$ finally gives

$$\prod_{p \leq x} \left(1 - \frac{1}{p}\right)^{-1} = e^\gamma \log x \left(1 + O\left(\frac{1}{\log x}\right)\right),$$

which is easily seen to be equivalent to the desired formula. □

Improved estimates for the Euler totient function

Theorem

Let $\varepsilon > 0$ be given. Then there exists an $N_\varepsilon \in \mathbb{Z}_+$ such that

$$\varphi(n) \geq (1 - \varepsilon) \frac{e^{-\gamma} n}{\log \log n} \quad \text{for all } n \geq N_\varepsilon.$$

Proof.

- Take any $n > 1$ and write

$$\frac{\varphi(n)}{n} = \prod_{p|n} \left(1 - \frac{1}{p}\right) = P_1(n)P_2(n),$$

where

$$P_1(n) = \prod_{\substack{p|n \\ p \leq \log n}} \left(1 - \frac{1}{p}\right), \quad \text{and} \quad P_2(n) = \prod_{\substack{p|n \\ p > \log n}} \left(1 - \frac{1}{p}\right).$$

- Then

$$P_2(n) > \prod_{\substack{p|n \\ p > \log n}} \left(1 - \frac{1}{\log n}\right) = \left(1 - \frac{1}{\log n}\right)^{f(n)},$$

where $f(n)$ is the number of primes which divide n and exceed $\log n$.

Proof

- Since

$$n \geq \prod_{p|n} p > \prod_{\substack{p|n \\ p > \log n}} p \geq (\log n)^{f(n)}$$

we find $\log n > f(n) \log \log n$, so $f(n) < \log n / \log \log n$.

- Since $1 - (1/\log n) < 1$, we obtain

$$P_2(n) > \left(1 - \frac{1}{\log n}\right)^{\log n / \log \log n} = \left(\left(1 - \frac{1}{\log n}\right)^{\log n}\right)^{1/\log \log n}.$$

- Now $\lim_{u \rightarrow \infty} \left(1 - \frac{1}{u}\right)^u = e^{-1}$, so we can conclude that

$$P_2(n) > 1 + o(1) \quad \text{as } n \rightarrow \infty.$$

- Therefore, there exists $N_\varepsilon \in \mathbb{Z}_+$ such that for every $n \geq N(\varepsilon)$ we have

$$\begin{aligned} \frac{\varphi(n)}{n} &= P_1(n)P_2(n) > (1 + o(1)) \prod_{\substack{p|n \\ p \leq \log n}} \left(1 - \frac{1}{p}\right) \\ &\geq (1 + o(1)) \prod_{p \leq \log n} \left(1 - \frac{1}{p}\right) = (1 + o(1)) \frac{e^{-\gamma}}{\log \log n} \geq (1 - \varepsilon) \frac{e^{-\gamma}}{\log \log n}. \end{aligned}$$

- This completes the proof. □

Improved bounds for the divisor function

Theorem

Let $\varepsilon > 0$ be given. Then there exists an $N_\varepsilon \in \mathbb{Z}_+$ such that

$$\tau(n) < 2^{(1+\varepsilon) \frac{\log n}{\log \log n}} = n^{\frac{(1+\varepsilon) \log 2}{\log \log n}} \quad \text{for all } n \geq N_\varepsilon.$$

In particular, for every $\delta > 0$, we obtain

$$\tau(n) = o(n^\delta).$$

Proof.

- ▶ Write $n = p_1^{a_1} \cdots p_k^{a_k}$, so that $\tau(n) = \prod_{i=1}^k (a_i + 1)$.
- ▶ We split the product into two parts, separating those prime divisors $< f(n)$ from those $\geq f(n)$, where $f(n)$ will be specified later.
- ▶ Then $\tau(n) = P_1(n)P_2(n)$ where

$$P_1(n) = \prod_{p_i < f(n)} (a_i + 1),$$

$$P_2(n) = \prod_{p_i \geq f(n)} (a_i + 1).$$

Proof

- ▶ In the product $P_2(n)$ we use the inequality $(a + 1) \leq 2^a$ to obtain $P_2(n) \leq 2^{S(n)}$, where

$$S(n) = \sum_{\substack{i=1 \\ p_i \geq f(n)}}^k a_i.$$

- ▶ Now

$$n = \prod_{i=1}^k p_i^{a_i} \geq \prod_{p_i \geq f(n)} p_i^{a_i} \geq \prod_{p_i \geq f(n)} f(n)^{a_i} = f(n)^{S(n)},$$

hence

$$\log n \geq S(n) \log f(n) \iff S(n) \leq \frac{\log n}{\log f(n)}.$$

- ▶ This gives us

$$P_2(n) \leq 2^{\log n / \log f(n)}.$$

Proof

- To estimate $P_1(n)$ we write

$$P_1(n) = \exp \left\{ \sum_{p_i < f(n)} \log (a_i + 1) \right\}$$

- We have $n \geq p_i^{a_i} \geq 2^{a_i}$, hence

$$\log n \geq a_i \log 2 \iff a_i \leq \log n / \log 2.$$

Therefore, for sufficiently large $n \in \mathbb{Z}_+$, we have

$$1 + a_i \leq 1 + \frac{\log n}{\log 2} < (\log n)^2$$

- Thus $n \geq N_0$ for some $N_0 \in \mathbb{Z}_+$ implies

$$\log (1 + a_i) < \log (\log n)^2 = 2 \log \log n.$$

- This gives us

$$P_1(n) < \exp \left(2 \log \log n \sum_{p_i < f(n)} 1 \right) \leq \exp(2\pi(f(n)) \log \log n).$$

Proof

- ▶ Setting $c = 6/\log 2$ and using $\pi(x) < 3x/\log x$, we obtain

$$P_1(n) < \exp\left(\frac{6f(n) \log \log n}{\log f(n)}\right) = 2^{\frac{cf(n) \log \log n}{\log f(n)}}.$$

- ▶ Then we deduce $\tau(n) = P_1(n)P_2(n) < 2^{g(n)}$, where

$$g(n) = \frac{\log n + cf(n) \log \log n}{\log f(n)} = \frac{\log n}{\log \log n} \frac{1 + \frac{cf(n) \log \log n}{\log n}}{\frac{\log f(n)}{\log \log n}}.$$

- ▶ Now we choose $f(n)$ to make $f(n) \log \log n / \log n \rightarrow 0$ and also to make $\log f(n) / \log \log n \rightarrow 1$ as $n \rightarrow \infty$. For this it suffices to take

$$f(n) = \frac{\log n}{(\log \log n)^2}.$$

- ▶ Therefore, there exists $N_\varepsilon \in \mathbb{Z}_+$ such that for every $n \geq N(\varepsilon)$ we have

$$g(n) = \frac{\log n}{\log \log n} \frac{1 + o(1)}{1 + o(1)} = \frac{\log n}{\log \log n} (1 + o(1)) < (1 + \varepsilon) \frac{\log n}{\log \log n}.$$

- ▶ This proves the theorem. □