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Congruences
Definition
Let m ∈ Z+. If a, b ∈ Z are such that a − b is divisible by m, then we say
that a and b are congruent modulo m, and write

a ≡ b (mod m).Fact
Congruence modulo m ∈ Z+ is an equivalence relation, which means that
for all a, b, c ∈ Z we have

(i) Reflexivity: a ≡ a (mod m);
(ii) Symmetry: if a ≡ b (mod m), then b ≡ a (mod m);

(iii) Transitivity: if a ≡ b (mod m), b ≡ c (mod m), then a ≡ c (mod m).
Notation
▶ The equivalence class of a ∈ Z under this relation is called the

congruence class of a modulo m, and written a + mZ.
▶ Thus, a + mZ is the set of all integers b such that b ≡ a (mod m), that

is, the set of all integers of the form a + mx for some x ∈ Z.
▶ If (a + mZ) ∩ (b + mZ) ̸= ∅, then a + mZ = b + mZ. We denote by

Z/mZ the set of all congruence classes modulo m.
▶ A congruence class modulo m is also called a residue class modulo m.



Congruences

▶ By the division algorithm, we can write every a ∈ Z in the form
a = mq + r, where q, r ∈ Z and 0 ≤ r ≤ m − 1. Then a ≡ r (mod m),
and r is called the least nonnegative residue of a modulo m.

▶ If a ≡ 0 (mod m) and |a| < m, then a = 0, since 0 is the only integral
multiple of m in the open interval (−m,m). This implies that if a ≡ b
(mod m) and |a − b| < m, then a = b.

▶ In particular, if r1, r2 ∈ {0, 1, . . . ,m− 1} and if a ≡ r1 (mod m) and
a ≡ r2 (mod m), then r1 = r2. Thus, every integer belongs to a unique
congruence class of the form r + mZ, where 0 ≤ r ≤ m − 1, and so

Z/mZ = {0 + mZ, 1 + mZ, . . . , (m − 1) + mZ}.

▶ The integers 0, 1, . . . ,m − 1 are pairwise incongruent modulo m. A set
of integers R = {r1, . . . , rm} is called a complete set of residues modulo
m if r1, . . . , rm are pairwise incongruent modulo m and every integer x
is congruent modulo m to some integer ri ∈ R.



Simple properties of the congruances
Proposition (Exercise)
Let m ∈ Z+ and x, y ∈ Z, if a1 ≡ a2 (mod m) and b1 ≡ b2 (mod m), then
▶ a1x + b1y ≡ a2x + b2y (mod m) and a1b1 ≡ a2b2 (mod m).
▶ an

1 ≡ an
2 (mod m) for every n ∈ Z+.

▶ f (a1) ≡ f (a2) (mod m) for every polynomial f with integer
coefficients.

Moreover, we have
▶ a1 ≡ a2 (mod m) iff a1z ≡ a2z (mod mz) for any integer z ̸= 0.
▶ If a1z ≡ a2z (mod m) and d = gcd(z,m), then a1 ≡ a2 (mod m/d).
▶ If a1 ≡ a2 (mod m) and d | a1 and d | m, then d | a2.
▶ If a1 ≡ a2 (mod m), then one has gcd(a1,m) = gcd(a2,m).
▶ If a1 ≡ a2 (mod n) and gcd(m, n) = 1, then a1 ≡ a2 (mod mn).
▶ a1 ≡ a2 (mod m) iff a1 + mZ = a2 + mZ.
▶ The integers a1, a2 ∈ Z are in the same residue class modulo m iff

a1 ≡ a2 (mod m).
▶ The m residue classes 0 + mZ, 1 + mZ, . . . , (m − 1) + mZ are disjoint

and their union is Z.



Integer ring Z/mZ modulo m

Definition
Addition and multiplication in Z/mZ are defined by

(a + mZ) + (b + mZ) = (a + b) + mZ,
(a + mZ) · (b + mZ) = ab + mZ.

By the previous proposition, the sum and product of congruence classes
modulo m are well-defined.

Theorem
For every integer m ≥ 2, the set Z/mZ = (Z/mZ,+, ·) of congruence
classes modulo m is a commutative ring with additive identity 0 + mZ and
multiplicative identity 1 + mZ.
▶ Depending on how explicit we want to be we will abbreviate a + mZ to

[a]m or a (mod m) or a.

▶ We will write
Z/mZ := {0, 1, . . . ,m − 1}.



Linear congruences
Theorem
Let a, b ∈ Z and m ∈ Z+ and let d = gcd(a,m). The congruence

ax ≡ b (mod m) (*)

has a solution if and only if d | b.
▶ If d | b, then the congruence (*) has exactly d solutions in integers that

are pairwise incongruent modulo m.
▶ In particular, if (a,m) = 1, then for every integer b the congruence (*)

has a unique solution modulo m.

Proof.
▶ If congruence (*) has a solution then there exist x, y ∈ Z such that

ax − b = my ⇐⇒ b = ax − my

Thus d = gcd(a,m) | b.
▶ If d = gcd(a,m) | b, then by the GCD theorem there are x1, x2 ∈ Z

such that ax1 + mx2 = d. Multiplying both sides by b/d and taking
x = x1b/d and y = −x2b/d we obtain that ax − my = b as desired.



Proof
▶ If x, u are solutions of (*), then

a (u − x) ≡ au − ax ≡ b − b ≡ 0 (mod m)

and so for some z ∈ Z we have a (u − x) = mz.
▶ If d = gcd(a,m), then gcd(a/d,m/d) = 1 and(a

d

)
(u − x) =

(m
d

)
z.

▶ By Euclid’s lemma m/d divides u − x, and so

u = x +
im
d

for some i ∈ Z,

that is,
u ≡ x (mod m/d).

▶ Moreover, every integer u of this form is a solution of (*). An integer u
congruent to x modulo m/d is congruent to x + im/d modulo m for
some integer i ∈ {0, 1, . . . , d − 1}, and the d integers x + im/d with
i ∈ {0, 1, . . . , d − 1} are pairwise incongruent modulo m.

▶ Thus, the congruence (*) has exactly d pairwise incongruent solutions.
This completes the proof.



Z/pZ is a field modulo a prime number p
Theorem
If p ∈ P is a prime, then Z/pZ is a field.

Proof.
▶ If a ∈ Z/pZ and a ̸= 0, then a is an integer not divisible by p.
▶ Thus gcd(a, p) = 1 and by the previous theorem, there exists x ∈ Z

such that ax ≡ 1 (mod p).
▶ This implies that ax = 1 in Z/pZ, and so a is invertible.
▶ Thus, Z/pZ is a field.

This completes the proof.

Lemma
Let p ∈ P be a prime number. Then x2 ≡ 1 (mod p) if and only if x ≡ ±1
(mod p).
Proof.
▶ If x ≡ ±1 (mod p), then x2 ≡ 1 (mod p).
▶ Conversely, if x2 ≡ 1 (mod p), then p divides x2 − 1 = (x − 1)(x + 1),

and so p must divide x − 1 or x + 1.
This completes the proof.



Wilson’s theorem
Theorem (Wilson)
If p ∈ P is prime, then (p − 1)! ≡ −1 (mod p).

Proof.
▶ This is true for p = 2 and p = 3, since 1! ≡ −1 (mod 2) and 2! ≡ −1

(mod 3). Let p ∈ P be such that p ≥ 5.
▶ By the previous theorem, to each integer a ∈ Z/pZ there is a unique

integer a−1 ∈ Z/pZ such that aa−1 ≡ 1 (mod p).
▶ By the previous lemma, a = a−1 if and only if a = 1 or a = p − 1.
▶ Therefore, the p − 3 numbers in the set {2, 3, . . . , p − 2} can be

partitioned into (p − 3)/2 pairs of integers {ai, a−1
i } such that

aia−1
i ≡ 1 (mod p) for i ∈ [(p − 3)/2]. Then

(p − 1)! ≡ 1 · 2 · 3 · · · (p − 2)(p − 1)

≡ (p − 1)
(p−3)/2∏

i=1

aia−1
i ≡ p − 1 ≡ −1 (mod p).

This completes the proof.



Useful result
Theorem
Let m, d ∈ Z+ be such that d | m. If gcd(a, d) = 1 for some a ∈ Z, then
there exists b ∈ Z such that b ≡ a (mod d) and gcd(b,m) = 1.

Proof.
▶ Let m =

∏
i∈[k] pri

i and d =
∏

i∈[k] psi
i , where ri ≥ 1 and 0 ≤ si ≤ ri for

i ∈ [k]. Let n be the product of the prime powers that divide m but not
d. Then n =

∏
i∈[k]
si=0

pri
i and gcd (n, d) = 1.

▶ By the existence of solutions for linear congruences there is x ∈ Z such
that dx ≡ 1 − a (mod n). Then b = a + dx ≡ 1 (mod n) and
gcd (b, n) = 1.

▶ Also,
b ≡ a (mod d).

▶ If gcd (b,m) ̸= 1, there exists a prime p ∈ P that divides both b and m.
However, p does not divide n since gcd (b, n) = 1. It follows that p | d,
and so p divides b − dx = a, which is impossible since (a, d) = 1.
Therefore, gcd (b,m) = 1.



Group of units in Z/mZ
▶ A congruence class modulo m is called relatively prime to m if some

(and, consequently, every) integer in the class is relatively prime to m.
▶ An integer a ∈ Z is called invertible modulo m or a unit modulo m if

there exists x ∈ Z such that

ax ≡ 1 (mod m).

▶ By the theorem on the existence of solutions for linear congruences
a ∈ Z is invertible modulo m if and only if a is relatively prime to m.

▶ Moreover, if a is invertible and ax ≡ 1 (mod m), then x is unique
modulo m. The congruence class a + mZ is called invertible and
denoted by (a + mZ)−1 = a−1 + mZ if there exists a congruence class
x + mZ such that (a + mZ)(x + mZ) = 1 + mZ.

▶ The invertible congruence classes are the units in the ring Z/mZ. We
denote the group of units in Z/mZ by (Z/mZ)×.

▶ Identifying Z/mZ with the set {0, 1, . . . ,m − 1} we can write

(Z/mZ)× := {a ∈ Z/mZ : gcd(a,m) = 1},

and it is immediate that #(Z/mZ)× = φ(m).



Important result
Theorem
Let m, n ∈ Z+ and (m, n) = 1. For every c ∈ Z there exist unique integers
a, b ∈ Z such that 0 ≤ a ≤ n − 1 and 0 ≤ b ≤ m − 1 and

c ≡ ma + nb (mod mn). (*)

Moreover, (c,mn) = 1 if and only if (a, n) = (b,m) = 1 in equation (*).
Proof.
▶ If a1, a2, b1, b2 ∈ Z and ma1 + nb1 ≡ ma2 + nb2 (mod mn), then

ma1 ≡ ma1 + nb1 ≡ ma2 + nb2 ≡ ma2 (mod n).

▶ Thus a1 ≡ a2 (mod n), since (m, n) = 1, giving a1 = a2. Similarly,
b1 = b2. Hence the mn integers ma + nb are pairwise incongruent
modulo mn. Since there are exactly mn distinct congruence classes
modulo mn, the congruence (*) has a unique solution for every c ∈ Z.

▶ Let c ≡ ma + nb (mod mn). Since (m, n) = 1, we have

(c,m) = (ma + nb,m) = (nb,m) = (b,m),

(c, n) = (ma + nb, n) = (ma, n) = (a, n).

▶ So (c,mn) = 1 ⇐⇒ (c,m) = (c, n) = 1 ⇐⇒ (b,m) = (a, n) = 1.



Chinise reminder theorem
Theorem (Chinise reminder theorem)
Let m1, . . . ,mk ∈ Z+ be pairwise relatively prime. For any a1, . . . , ak ∈ Z
there is a ∈ Z such that a ≡ ai (mod mi) for all i ∈ [k]. If b ∈ Z is also a
solution, then a ≡ b (mod m1 · · ·mk).

Proof.
▶ Let M =

∏
i∈[k] mi and Mi = M/mi for i ∈ [k].

▶ Since (mi,mj) = 1 whenever i ̸= j, we have (mi,Mi) = 1 for i ∈ [k].
▶ In particular, Mi (mod mi) is invertible modulo mi and there is ni ∈ Z

such that niMi ≡ 1 (mod mi).
▶ Set a =

∑
i∈[k] ainiMi. Since mj | Mi for i ̸= j, we obtain that

a ≡
k∑

i=1

ainiMi ≡ ajnjMj ≡ aj (mod mj),

implying that a satisfies the desired congruence equations.
▶ If there is another solution b ∈ Z such that b ≡ ai (mod mi) for all

i ∈ [k], then a ≡ b (mod m1 · · ·mk), since m1, . . . ,mk ∈ Z+ are
pairwise coprime. This completes the proof.



Ring isomorphism
Theorem
Let m1, . . . ,mk ∈ Z+ be pairwise relatively prime. The map

ψ : Z/m1 · · ·mkZ → Z/m1Z× · · · × Z/mkZ

given by

ψ(a (mod m1 · · ·mk)) = (a (mod m1), . . . , a (mod mk))

is a ring isomorphism.

Proof.
▶ One easily checks that ψ is a homomorphism of rings.
▶ To see that ψ is injective, let a ∈ Z so that ψ(a (mod m1 · · ·mk)) = 0.
▶ In particular, a ≡ 0 (mod mi) for each i ∈ [k], so that mi | a for all

i ∈ [k]. Since (mi,mj) = 1 for i ̸= j, we conclude that m1 · · ·mk | a, so
that a ≡ 0 (mod m1 · · ·mk).

▶ The fact that ψ is surjective is then an immediate consequence of the
Chinese remainder theorem.



Applications of the Chinise reminder theorem
Theorem
Let m = pr1

1 · · · prk
k ∈ Z+. Let f be a polynomial with integral coefficients.

The congruence f (x) ≡ 0 (mod m) is solvable if and only if the
congruences f (x) ≡ 0 (mod pri

i ) are solvable for all i ∈ [k].

Proof.
▶ If f (x) ≡ 0 (mod m) has a solution in integers, then there exists a ∈ Z

such that m | f (a). Since pri
i | m, it follows that pri

i | f (a), and so the
congruences f (x) ≡ 0 (mod pri

i ) are solvable for i ∈ [k].
▶ Conversely, suppose that the congruences f (x) ≡ 0 (mod pri

i ) are
solvable for i ∈ [k]. Then for each i ∈ [k] there exists ai ∈ Z such that

f (ai) ≡ 0 (mod pri
i )

Since the prime powers pr1
1 , . . . , p

rk
k are pairwise relatively prime, the

Chinese remainder theorem tells us that there exists a ∈ Z such that
a ≡ ai (mod pri

i ) for all i ∈ [k]. Then f (a) ≡ f (ai) ≡ 0 (mod pri
i ) for

all i ∈ [k]. Since f (a) is divisible by each of the prime powers pri
i , it is

also divisible by their product m, and so f (a) ≡ 0 (mod m).
This completes the proof.



Lagrange’s theorem
Theorem (Lagrange’s theorem)
If G is a finite group and H is a subgroup of G, then |H| divides |G|.

Proof.
▶ Let G be a group, written multiplicatively, and let ∅ ≠ X ⊆ G. For

every a ∈ G we define the set aX = {ax : x ∈ X}.
▶ The map f : X → aX defined by f (x) = ax is a bijection, and so

|X| = |aX| for all a ∈ G. If H is a subgroup of G, then aH is called a
coset of H. Let aH and bH be cosets of the subgroup H. We will show
that the cosets of a subgroup H are either disjoint or equal.

▶ Indeed, if aH ∩ bH ̸= ∅, then there exist x, y ∈ H such that ax = by. If
z ∈ aH, then z = ah for some h ∈ H and z = ah = axx−1h = byx−1h,
but yx−1h ∈ H, since H is a subgroup. Thus aH ⊆ bH. By symmetry
we also have that bH ⊆ aH and consequently aH = bH.

▶ Since every element of G belongs to some coset of H (for example,
a ∈ aH for all a ∈ G ), it follows that the cosets of H partition G. We
denote the set of cosets by G/H. If G is a finite group, then H and G/H
are finite, and |G| = |H||G/H|.

▶ In particular, we see that |H| divides |G| as desired.



Basic group theory
▶ Let G be a group, written multiplicatively, and let H = {ak : k ∈ Z} for

some a ∈ G. Then 1 = a0 ∈ H ⊆ G. Since akal = ak+l for all k, l ∈ Z,
it follows that H is a subgroup of G. This subgroup is called the cyclic
subgroup generated by a, and written H = ⟨a⟩ = {ak : k ∈ Z}.

▶ Cyclic subgroups are abelian. The group G is cyclic if there exists an
element a ∈ G such that G = ⟨a⟩. In this case, the element a is called a
generator of G. For example, the group (Z/7Z)× = ⟨3 + 7Z⟩.

▶ If ak ̸= al for all integers k ̸= l, then the cyclic subgroup ⟨a⟩ is infinite.
▶ If there exist integers k and l such that k < l and ak = al, then al−k = 1.

Let d be the smallest positive integer such that ad = 1. Then the group
elements 1, a, a2, . . . , ad−1 are distinct. By the division algorithm, for
any n ∈ Z there exist q, r ∈ Z such that n = dq + r and 0 ≤ r ≤ d − 1.
Since an = adq+r =

(
ad
)q

ar = ar, it follows that

⟨a⟩ = {an : n ∈ Z} = {ar : 0 ≤ r ≤ d − 1} ,

and the cyclic subgroup generated by a has order d.
▶ Moreover, ak = al if and only if k ≡ l (mod d).
▶ Let G be a group. We define the order of a ∈ G as the cardinality of the

cyclic subgroup generated by a and write ordG(a) = |⟨a⟩|.
▶ If G = (Z/mZ)× we will abbreviate ord(Z/mZ)×(a) to ordm(a).



Euler’s theorem and Fermat’s little theorem
Theorem
Let G be a finite group, and a ∈ G. Then ordG(a) = |⟨a⟩| divides |G|.

Proof.
By Lagrange’s theorem |⟨a⟩| divides |G|, since ⟨a⟩ is the subgroup of G.

Theorem (Euler’s theorem)
Let m ∈ Z+ and a ∈ Z be such that (a,m) = 1. Then aφ(m) ≡ 1 (mod m).

Proof.
▶ We apply the previous theorem to G = (Z/mZ)×, then |G| = φ(m).
▶ By the previous theorem, d = ordG(a) = |⟨a⟩| divides φ(m), and so

aφ(m) ≡
(
ad)φ(m)/d ≡ 1 (mod m).

This completes the proof of Euler’s theorem.

Theorem (Fermat’s little theorem)
Let p ∈ P be a prime number. If the integer a ∈ Z is not divisible by p, then
ap−1 ≡ 1 (mod p), which follows from Euler’s theorem applied to m = p.



Subgroups of cyclic groups
Theorem
Let G be a cyclic group of order m, and let H be a subgroup of G. If a is a
generator of G, then there exists a unique divisor d of m such that H is the
cyclic subgroup generated by ad, and H has order m/d.

Proof.
▶ Let H be a subgroup of G. If H = ⟨1⟩, then H is cyclic and we are

done. We can assume that H ̸= ⟨1⟩ and take ad ∈ H with the smallest
d ∈ Z+ such that ad ̸= 1. Our aim is to prove that H = ⟨ad⟩ and d | m.

▶ Obviously ⟨ad⟩ ⊆ H. For the converse, take b ∈ H, since H is a
subgroup of G = ⟨a⟩, then b = an for some n ∈ [m − 1].

▶ By the division algorithm we have that n = dq + r for some q, r ∈ N
such that 0 ≤ r < d.

▶ Thus b = an =
(
ad
)q

ar, hence ar = ana−dq ∈ H, since an ∈ H and
a−dq ∈ H and H is a subgroup.

▶ If 0 < r < d, then ar ∈ H, which contradicts the minimality of d. Thus
we must have r = 0 and consequently b = adq ∈ ⟨ad⟩, giving H ⊆ ⟨ad⟩.
This shows that H = ⟨ad⟩ and by the Lagrange theorem d | m.

This completes the proof of the theorem.



Subgroups of cyclic groups
Theorem
Let G be a cyclic group of order m, and let a be a generator of G. For every
k ∈ Z, the cyclic subgroup generated by ak has order m/d, where
d = (m, k), and

〈
ak
〉
=

〈
ad
〉
. In particular, G has exactly φ(m) generators.

Proof.
▶ Since d = (k,m), there exist integers x and y such that d = kx + my.
▶ Then

ad = akx+my =
(
ak)x

(am)
y
=

(
ak)x

and so ad ∈
〈
ak
〉

and
〈
ad
〉
⊆

〈
ak
〉
.

▶ Since d | k, there exists z ∈ Z such that k = dz. Then

ak =
(
ad)z

and so ak ∈
〈
ad
〉

and
〈
ak
〉
⊆

〈
ad
〉
.

▶ Hence,
〈
ak
〉
=

〈
ad
〉

and ak has order m/d.
▶ In particular, ak generates G if and only if d = 1 if and only if

(m, k) = 1, and so G has exactly φ(m) generators.
This completes the proof of the theorem.



Primitive roots
Definition of order (revised)
▶ Let m ∈ Z+ be such that m > 1, and a ∈ Z such that (a,m) = 1.
▶ The order of a modulo m, denoted by ordm(a), is the smallest positive

integer d such that ad ≡ 1 (mod m). We know that ordm(a) | φ(m).
▶ The order of a modulo m is also called the exponent of a modulo m, and

is sometimes denoted by expm(a) = ordm(a).

Definition of primitive roots
▶ The integer a is called a primitive root modulo m if a has order φ(m).
▶ In this case, the φ(m) integers 1, a, a2, . . . , aφ(m)−1 are relatively prime

to m and are pairwise incongruent modulo m.
▶ In other words, they form a reduced residue system modulo m.

Examples
▶ If m = 7, then ord7(2) = 3, thus 2 is not a primitive root modulo 7, but

ord7(3) = 6 thus 3 is a primitive root modulo 7.
▶ No number in (Z/8Z)× is a primitive root modulo 8.



Examples
▶ For example, if m = 7 and a = 2, then ord7(2) = 3, since

20 ≡ 1 (mod 7),

21 ≡ 2 (mod 7),

22 ≡ 4 (mod 7),

23 ≡ 1 (mod 7).

▶ If m = 7 and a = 3, then ord7(3) = 6, since
30 ≡ 1 (mod 7),

31 ≡ 3 (mod 7),

32 ≡ 2 (mod 7),

33 ≡ 6 (mod 7),

34 ≡ 4 (mod 7),

35 ≡ 5 (mod 7),

36 ≡ 1 (mod 7).

▶ For m = 8 we also have

12 ≡ 32 ≡ 52 ≡ 72 ≡ 1 (mod 8).



Division algorithm for polynomials

Theorem (Exercise!)
Let F be a field. If f (x) and d(x) are polynomials in F[x] and if d(x) ̸= 0,
then there exist unique polynomials q(x) and r(x) such that

f (x) = d(x)q(x) + r(x),

and
▶ either r(x) = 0;
▶ or the degree of r(x) is strictly smaller than the degree of d(x).

Theorem (Exercise!)
Let f (x) ∈ F[x] be such that f (x) ̸= 0, and let N0( f ) denote the number of
distinct zeros of f (x) in F. Then N0( f ) does not exceed the degree of f (x),
that is,

N0( f ) ≤ deg( f ).



Subgroups of the multiplicative group of a field
Theorem
Every finite subgroup of the multiplicative group of a field is cyclic.

Proof.
▶ Let F be a field and let F× := F \ {0} be its multiplicative group.
▶ Let G be a finite subgroup of F× and assume that |G| = m.
▶ If a ∈ G, then ordG(a) is a divisor of m. For every divisor d of m, let

ψ(d) := |{b ∈ G : ordG(b) = d}|.

▶ If ψ(d) ̸= 0, then there exists an element a ∈ G of order d, and every
element of the cyclic subgroup ⟨a⟩ generated by a satisfies ad = 1.

▶ By the previous theorem, the polynomial

f (x) = xd − 1 ∈ F[x],

has at most d zeros. Hence, every zero of f (x) must belong to the cyclic
subgroup ⟨a⟩, otherwise we would have more than d zeros for f (x),
which is impossible.

▶ In particular, every element of G of order d must belong to ⟨a⟩.



For any prime p ∈ P primitive roots (mod p) exist
▶ We know that a cyclic group of order d has exactly φ(d) generators.

Therefore, ψ(d) = 0 or ψ(d) = φ(d) for every divisor d of m.
▶ Since every element of G has order d for some divisor d of m, we have∑

d|m

ψ(d) = m.

▶ Also we know that ∑
d|m

φ(d) = m,

and so ψ(d) = φ(d) for every divisor d of m, since ψ(d) ≤ φ(d).
▶ In particular, ψ(m) = φ(m) ≥ 1, and so G is a cyclic group of order m.

This completes the proof of the theorem.

Theorem
For every prime p ∈ P, the multiplicative group of the finite field Z/pZ is
cyclic. This group has φ(p − 1) generators. Equivalently, for every prime
p ∈ P, there exist φ(p − 1) pairwise incongruent primitive roots modulo p.

Proof.
This follows from the previous theorem, since |(Z/pZ)×| = p − 1.



Examples
▶ By the structure theorem of subgroups in cyclic groups, if g is a

primitive root modulo p, then gk is a primitive root iff (k, p − 1) = 1.
▶ For example, for p = 13 there are φ(12) = 4 integers k such that

0 ≤ k ≤ 11 and (k, 12) = 1, namely, k = 1, 5, 7, 11, and so the four
pairwise incongruent primitive roots modulo 13 are

21 ≡ 2 (mod 13),

25 ≡ 6 (mod 13),

27 ≡ 11 (mod 13),

211 ≡ 7 (mod 13).

▶ The following table lists the primitive roots for the first six primes.

p φ(p − 1) primitive roots
2 1 1
3 1 2
5 2 2,3
7 2 3,5

11 4 2, 6, 7, 8
13 4 2, 6, 7, 11



Primitive roots of composite moduli for m = 2 or m = 4
Theorem
There exists a primitive root modulo m = 2k if and only if m = 2 or m = 4.

Proof.
▶ We note that 1 is a primitive root modulo 2, and 3 is a primitive root

modulo 4. For k ≥ 3 we prove that there is no primitive root modulo 2k.
▶ Since φ

(
2k
)
= 2k−1, it suffices to show by induction on k ≥ 3, that

a2k−2
≡ 1 (mod 2k) for any odd a ∈ Z+ (*)

▶ If k = 3, then m = 8 and 12 ≡ 32 ≡ 52 ≡ 72 ≡ 1 (mod 8), thus the
base case follows. Let k ≥ 3, and suppose that (*) is true.

▶ Then a2k−2 − 1 is divisible by 2k. Since a ∈ Z+ is odd, it follows that
a2k−2

+ 1 is even. Therefore,

a2k−1
− 1 =

(
a2k−2

− 1
)(

a2k−2
+ 1

)
is divisible by 2k+1, and so a2k−1 ≡ 1 (mod 2k+1).

This completes the induction and the proof of theorem.



Primitive roots to composite moduli
Theorem
Let m ∈ Z+ be not a power of 2. If m has a primitive root, then m = pk or
2pk, where p ∈ P is an odd prime and k ∈ Z+.

Proof.
▶ Let a,m ∈ Z be such that (a,m) = 1 and m ≥ 3. Suppose that

m = m1m2, where (m1,m2) = 1 and m1 ≥ 3,m2 ≥ 3.

▶ Then (a,m1) = (a,m2) = 1. Since φ(m) is even for m ≥ 3, then

n =
φ(m)

2
=
φ (m1)φ (m2)

2
∈ Z+.

▶ Consequently, by Euler’s theorem, we have

aφ(m1) ≡ 1 (mod m1)

and so

an =
(

aφ(m1)
)φ(m2)/2

≡ 1 (mod m1).



Proof

▶ Similarly,

an =
(

aφ(m2)
)φ(m1)/2

≡ 1 (mod m2).

▶ Since (m1,m2) = 1 and m = m1m2, we have

an ≡ 1 (mod m)

and so the order of a modulo m is strictly smaller than φ(m).
▶ Consequently, if we can factor m = m1m2, then there does not exist a

primitive root modulo m.
▶ In particular, if m is divisible by two distinct odd primes, then m does

not have a primitive root.
▶ Similarly, if m = 2lpk, where l ≥ 2, then m does not have a primitive

root.
▶ Therefore, the only moduli m ̸= 2l for which primitive roots can exist

are of the form m = pk or m = 2pk for some odd prime p.
This completes the proof of the theorem.



Exponential increase in the order
Theorem
Let p ∈ P be an odd prime, and let a ̸= ±1 be an integer not divisible by p.
Let d = ordp(a) and let k0 be the largest integer so that ad ≡ 1 (mod pk0).
Then

ordpk(a) =

{
d if 1 ≤ k ≤ k0,

dpk−k0 if k ≥ k0.

Proof.
▶ There exists u0 ∈ Z such that ad = 1 + pk0 u0 and (u0, p) = 1.
▶ Let k ∈ [k0], and let v = ordpk(a). If av ≡ 1 (mod pk), then av ≡ 1

(mod p), and so d | v. Since k ∈ [k0], we have ad ≡ 1 (mod pk), and
so v | d. It follows that v = d and ordpk(a) = d for k ∈ [k0] as desired.

▶ Let j ∈ N. We shall show that there exists uj ∈ Z such that

adpj
= 1 + pj+k0 uj and (uj, p) = 1 (*)

▶ The proof is by induction on j ∈ N. The assertion is true for j = 0 by
our choice of k0. Suppose we have (*) for some integer j ≥ 0. We will
show that (*) remains true with j + 1 in place of j.



Proof
▶ By the binomial theorem, there exists vj ∈ N such that

adpj+1
=
(

1 + pj+k0 uj

)p
= 1 + pj+1+k0 uj +

p∑
i=2

(
p
i

)
pi(j+k0)ui

j

= 1 + pj+1+k0 uj + pj+2+k0 vj = 1 + pj+1+k0 (uj + pvj) .

▶ Setting uj+1 = uj + pvj we have (uj+1, p) = 1, giving (*) for all j ∈ N.
▶ By induction on k ≥ k0 we prove the second part of the theorem. The

base case for k = k0 follows from the first part. Let k ≥ k0 + 1 and
j = k − k0 ≥ 1 and suppose that ordpk−1(a) = dpj−1.

▶ Let vk = ordpk(a) and note that

avk ≡ 1 (mod pk) =⇒ avk ≡ 1 (mod pk−1)

and so dpj−1 divides vk.
▶ Since

adpj−1
= 1 + pk−1uj−1 ̸≡ 1 (mod pk)

it follows that dpj−1 is a proper divisor of vk. On the other hand,

adpj
= 1 + pkuj ≡ 1 (mod pk)

and so vk divides dpj. It follows that the order of a modulo pk is exactly
vk = dpj = dpk−k0 . This completes the proof.



Primitive roots of composite moduli for m = pk or m = 2pk

Theorem
Let p ∈ P be an odd prime.
▶ If g is a primitive root modulo p, then either g or g + p is a primitive

root modulo pk for all k ≥ 2.
▶ If g is a primitive root modulo pk and h ∈

{
g, g + pk

}
is odd, then h is a

primitive root modulo 2pk.
Proof.
▶ Let g be a primitive root modulo p. Then ordp(g) = p − 1.
▶ Let k0 ∈ Z+ be the largest integer such that pk0 divides gp−1 − 1.
▶ By the previous theorem, if k0 = 1, then the order of g modulo pk is

(p − 1)pk−1 = φ
(
pk
)
, and g is a primitive root modulo pk for all k ≥ 1.

▶ If k0 ≥ 2, then gp−1 = 1 + p2v for some v ∈ Z. By the binomial
theorem, we have

(g + p)p−1 =

p−1∑
i=0

(
p − 1

i

)
gp−1−ipi ≡ gp−1 + (p − 1)gp−2p (mod p2)

≡ 1 + p2v + gp−2p2 − gp−2p (mod p2)

≡ 1 − gp−2p (mod p2) ̸≡ 1 (mod p2).



Proof
▶ This proves that g + p is a primitive root modulo p such that

(g + p)p−1 = 1 + pu0 and (u0, p) = 1.

▶ Therefore, g + p is a primitive root modulo pk for all k ∈ Z+.
▶ Next we prove that primitive roots exist for all moduli of the form 2pk.
▶ If g is a primitive root modulo pk, then g + pk is also a primitive root

modulo pk by the binomial theorem. Since pk is odd, it follows that one
of the two integers g and g + pk is odd, and the other is even.

▶ Let h ∈
{

g, g + pk
}

be odd. Since
(
g + pk, pk

)
=

(
g, pk

)
= 1, it

follows that
(
h, 2pk

)
= 1. The order of h modulo 2pk is not less than

φ
(
pk
)
, which is the order of h modulo pk, and not greater than φ

(
2pk

)
.

▶ However, since p is an odd prime, we have

φ
(
2pk) = φ

(
pk)

and so h has order φ
(
2pk

)
modulo 2pk, that is, h is a primitive root

modulo 2pk. This completes the proof.



Primitive roots using the group theoretic language
Gathering what has been proven about primitive roots can be subsumed in
the following result.

Theorem
If q ∈ {1, 2, 4, pk, 2pk}, where p ∈ P is an odd prime number and k ∈ Z+,
then the multiplicative group (Z/qZ)× is cyclic. In other words, there exists
a primitive root modulo q, that is, a ∈ (Z/qZ)× such that ordq(a) = φ(q).

Remark
▶ We know that (Z/2kZ)× is cyclic if and only if k ∈ [2]. For k = 2 we

can see that all elements have order 2.
▶ However, there do exist odd integers of order 2k−2 in (Z/2kZ)×.

Proposition
For every k ∈ Z+, one has that 52k ≡ 1 + 3 · 2k+2 (mod 2k+4).

Proof.
▶ The proof is by induction on k ∈ Z+.

▶ For k = 1 we have 521
= 25 ≡ 1 + 3 · 23 (mod 25).

▶ For k = 2 we have 522
= 625 = 1 + 48 + 576 ≡ 1 + 3 · 24 (mod 26).



(Z/2kZ)× ≡ Z/2Z× Z/2k−2Z
▶ If the theorem holds for k ∈ Z+, then there exists u ∈ Z such that

52k
= 1 + 3 · 2k+2 + 2k+4u = 1 + 2k+2(3 + 4u).

▶ Since 2k + 4 ≥ k + 5, we have

52k+1
=

(
52k

)2
=

(
1 + 2k+2(3 + 4u)

)2 ≡ 1 + 2k+3(3 + 4u) (mod 22k+4)

≡ 1 + 3 · 2k+3 (mod 2k+5) as desired.

Theorem
If k ≥ 3, then 5 has order 2k−2 modulo 2k. One can say even more.
▶ If a ≡ 1 (mod 4), then there exists a unique integer

i ∈
{

0, 1, . . . , 2k−2 − 1
}

such that

a ≡ 5i (mod 2k).

▶ If a ≡ 3 (mod 4), then there exists a unique integer
i ∈

{
0, 1, . . . , 2k−2 − 1

}
such that

a ≡ −5i (mod 2k).



Proof
▶ In the case k = 3, we observe that 5 has order 2 modulo 8, and

1 ≡ 50 (mod 8),

3 ≡ −51 (mod 8),

5 ≡ 51 (mod 8),

7 ≡ −50 (mod 8).

▶ Let k ≥ 4. By the previous proposition, we have

52k−2
≡ 1 + 3 · 2k (mod 2k+2)

≡ 1 (mod 2k),

and

52k−3
≡ 1 + 3 · 2k−1 (mod 2k+1)

≡ 1 + 3 · 2k−1 (mod 2k)

̸≡ 1 (mod 2k).



Proof
▶ Therefore, 5 has order exactly 2k−2 modulo 2k, and so the integers 5i

are pairwise incongruent modulo 2k for i ∈ {0, 1, . . . , 2k−2 − 1}.
▶ Since 5i ≡ 1 (mod 4) for all i ∈ Z+, and since exactly half, that is,

2k−2, of the 2k−1 odd numbers between 0 and 2k are congruent to 1
modulo 4, it follows that the congruence

5i ≡ a (mod 2k)

is solvable for every a ≡ 1 (mod 4).
▶ If a ≡ 3 (mod 4), then −a ≡ 1 (mod 4) and so the congruence

−a ≡ 5i (mod 2k) ⇐⇒ a ≡ −5i (mod 2k)

is solvable. This completes the proof.

Remark
▶ If k ≥ 3 then the previous theorem can be restated as follows

(Z/2kZ)× = ⟨−1⟩ × ⟨5⟩ ≡ Z/2Z× Z/2k−2Z,

where ⟨a⟩ denotes the cyclic subgroup of
(
Z/2kZ

)×
generated by a for

a = −1 and a = 5.


