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Congruences

Definition
Letm € Z,. If a,b € Z are such that a — b is divisible by m, then we say
that a and b are congruent modulo m, and write

Fact a=b (mod m).
Congruence modulo m € Z_ is an equivalence relation, which means that
for all a, b, c € Z we have

(i) Reflexivity: @ = a (mod m);

(ii) Symmetry: if a = b (mod m), then b = a (mod m);
(iii) Transitivity: ifa = b (mod m), b = ¢ (mod m), then a = ¢ (mod m).
Notation

» The equivalence class of a € Z under this relation is called the
congruence class of a modulo m, and written a + mZ.

» Thus, a + mZ is the set of all integers b such that b = a (mod m), that
is, the set of all integers of the form a + mx for some x € Z.

> If (a+mZ) N (b+ mZ) # 0, then a + mZ = b + mZ. We denote by
7 /mZ the set of all congruence classes modulo m.

» A congruence class modulo m is also called a residue class modulo m.



Congruences

> By the division algorithm, we can write every a € Z in the form
a=mq+r,whereq,r € Zand 0 <r <m— 1. Thena = r (mod m),
and r is called the least nonnegative residue of @ modulo m.

» Ifa =0 (mod m) and |a| < m, then a = 0, since 0 is the only integral
multiple of m in the open interval (—m, m). This implies that if « = b
(mod m) and |a — b| < m, then a = b.

» In particular, if r1, 7, € {0,1,...,m— 1} and if a = r; (mod m) and
a = r, (mod m), then r; = rp. Thus, every integer belongs to a unique
congruence class of the form r + mZ, where 0 < r < m — 1, and so

Z/mZ ={0+mZ1+mZ,...,(m—1)+mZ}.

» The integers O, 1,...,m — 1 are pairwise incongruent modulo m. A set
of integers R = {ry,...,ry,} is called a complete set of residues modulo
mifry, ..., r, are pairwise incongruent modulo m and every integer x

is congruent modulo m to some integer r; € R.



Simple properties of the congruances

Proposition (Exercise)
Letm € Zy and x,y € Z, if ay = a; (mod m) and by = b, (mod m), then

>
>

a1x + b1y = arx + byy (mod m) and a\by = ayb, (mod m).
a} = a5 (mod m) for everyn € Z.

» f(a1) =f(az) (mod m) for every polynomial f with integer

coefficients.

Moreover, we have

>
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a; = ap (mod m) iff a1z = axz (mod mz) for any integer z # 0.
Ifaz = apz (mod m) and d = ged(z,m), then a; = a, (mod m/d).
Ifa; = a; (mod m) andd | ay and d | m, then d | a;.

Ifay = a; (mod m), then one has ged(ar, m) = ged(az, m).

Ifa; = ap (mod n) and ged(m,n) = 1, then a; = a; (mod mn).

a; = ap (mod m) iffay + mZ = a, + mZ.

The integers ay,ay € 7 are in the same residue class modulo m iff

a; = ap; (mod m).

The m residue classes 0 + mZ,1 +mZ, ..., (m — 1) + mZ are disjoint
and their union is Z.



Integer ring Z/mZ modulo m

Definition
Addition and multiplication in Z/mZ are defined by

(a+mZ)+ (b+mZ) = (a+b)+mZ,
(a+mZ)-(b+mZ) = ab+ mZ.

By the previous proposition, the sum and product of congruence classes
modulo m are well-defined.

Theorem

For every integer m > 2, the set Z./mZ = (Z/mZ,+, -) of congruence
classes modulo m is a commutative ring with additive identity 0 + mZ and
multiplicative identity 1 + mZ.

» Depending on how explicit we want to be we will abbreviate a + mZ to
[@lm or a (modm) or a.

» We will write
Z/mZ:={0,1,...,m—1}.



Linear congruences

Theorem
Leta,b € Z andm € Z4 and let d = gcd(a, m). The congruence

ax=b (mod m) (*)

has a solution if and only if d | b.

» Ifd | b, then the congruence (*) has exactly d solutions in integers that
are pairwise incongruent modulo m.

» In particular, if (a,m) = 1, then for every integer b the congruence (*)
has a unique solution modulo m.

Proof.

» If congruence (*) has a solution then there exist x,y € Z such that
ax—b=my <= b=ax—my

Thus d = ged(a, m) | b.

» If d = ged(a,m) | b, then by the GCD theorem there are x|, x; € Z
such that ax; + mx, = d. Multiplying both sides by b/d and taking
x =x1b/d and y = —x,b/d we obtain that ax — my = b as desired.



Proof

If x, u are solutions of (¥), then
au—x)=au—ax=b—-—b=0 (mod m)

and so for some z € Z we have a (u — x) = mz.
If d = ged(a, m), then ged(a/d,m/d) = 1 and

() -0=(3)=

By Euclid’s lemma m/d divides u — x, and so
u:er% forsome i€Z,

that is,

u=x (mod m/d).
Moreover, every integer u of this form is a solution of (*). An integer u
congruent to x modulo m/d is congruent to x + im/d modulo m for
some integer i € {0, 1,...,d — 1}, and the d integers x + im/d with
i€{0,1,...,d— 1} are pairwise incongruent modulo .
Thus, the congruence (*) has exactly d pairwise incongruent solutions.
This completes the proof. O



Z,/pZ is a field modulo a prime number p

Theorem
If p € Pis a prime, then 7./pZ is a field.
Proof.
» Ifa € Z/pZ and a # 0, then a is an integer not divisible by p.

» Thus ged(a, p) = 1 and by the previous theorem, there exists x € Z
such that ax = 1 (mod p).

» This implies that ax = 1 in Z/pZ, and so a is invertible.

» Thus, Z/pZ is a field.
This completes the proof. O
Lemma

Let p € P be a prime number. Then x> = 1 (mod p) if and only if x = +1

(mod p).
Proof.

» Ifx=+1 (mod p), thenx’> = 1 (mod p).

» Conversely, if x> = 1 (mod p), then p divides x> — 1 = (x — 1)(x + 1),
and so p must divide x — 1 or x + 1.

This completes the proof. O



Wilson’s theorem

Theorem (Wilson)
Ifp € Pis prime, then (p — 1)! = —1 (mod p).
Proof.
» This is true for p = 2 and p = 3, since 1! = —1 (mod 2) and 2! = —1

(mod 3). Let p € P be such that p > 5.

» By the previous theorem, to each integer a € Z/pZ there is a unique
integer a~! € Z/pZ such thataa=! =1 (mod p).

» By the previous lemma, @ = ¢~ ' ifand only ifa = lora = p — 1.

» Therefore, the p — 3 numbers in the set {2,3,...,p — 2} can be
partitioned into (p — 3)/2 pairs of integers {a;,a; '} such that
aia; ' =1 (mod p) fori € [(p — 3)/2]. Then

p-=1-2-3---(p=2)(p—1)

(p—3)/2
=@p-1 H aga;'=p—1=—1 (mod p).

i=1

This completes the proof. O



Useful result

Theorem
Let m,d € Z be such that d | m. If gcd(a,d) = 1 for some a € Z, then
there exists b € 7 such that b = a (mod d) and ged(b,m) = 1.

Proof.
> Letm = Hie[k} piandd = Hie[k] pi’, where r; > 1 and 0 < s5; < r; for
i € [k]. Let n be the product of the prime powers that divide m but not
d. Then n = [Jici pi' and ged (n,d) = 1.
Si:()

> By the existence of solutions for linear congruences there is x € Z such
thatdx =1 —a (mod n). Thenb = a+dx =1 (mod n) and
ged (byn) = 1.
» Also,
b=a (mod d).

» If gcd (b,m) # 1, there exists a prime p € P that divides both b and m.
However, p does not divide n since ged (b, n) = 1. It follows that p | d,
and so p divides b — dx = a, which is impossible since (a,d) = 1.
Therefore, ged (b, m) = 1.



Group of units in Z/mZ

>

>

A congruence class modulo m is called relatively prime to m if some
(and, consequently, every) integer in the class is relatively prime to m.

An integer a € Z is called invertible modulo m or a unit modulo m if
there exists x € Z such that

ax=1 (mod m).

By the theorem on the existence of solutions for linear congruences
a € 7 is invertible modulo m if and only if « is relatively prime to m.

Moreover, if a is invertible and ax = 1 (mod m), then x is unique
modulo m. The congruence class a + mZ is called invertible and
denoted by (a + mZ)~! = a=! + mZ if there exists a congruence class
x + mZ such that (a + mZ)(x + mZ) = 1 + mZ.

The invertible congruence classes are the units in the ring Z/mZ. We
denote the group of units in Z/mZ by (Z/mZ)*.

Identifying Z/mZ with the set {0, 1,...,m — 1} we can write
(Z/mZ)* :={a € Z/mZ : gcd(a,m) = 1},

and it is immediate that #(Z/mZ)* = p(m).



Important result

Theorem

Let m,n € Z and (m,n) = 1. For every ¢ € 7 there exist unique integers
a,b e Zsuchthat0 <a<n—1and0<b<m—1and

c=ma+nb (mod mn). *)

Moreover, (c,mn) = 1 if and only if (a,n) = (b, m) = 1 in equation (*).

Proof.
» If ay,as,by,b; € Z and ma; + nb; = may + nb, (mod mn), then

ma; = may + nbi = ma, + nby = ma, (mod n).

» Thus a; = a, (mod n), since (m,n) = 1, giving a; = a,. Similarly,
b1 = b,. Hence the mn integers ma + nb are pairwise incongruent
modulo mn. Since there are exactly mn distinct congruence classes
modulo mn, the congruence (*) has a unique solution for every ¢ € Z.

» Letc = ma + nb (mod mn). Since (m,n) = 1, we have

(¢,m) = (ma + nb,m) = (nb,m) = (b,m),
(¢,n) = (ma + nb,n) = (ma,n) = (a,n).

» So (¢,mn) =1 <= (¢,m) = (c,n) =1 < (b,m) = (a,n) = 1. O



Chinise reminder theorem

Theorem (Chinise reminder theorem)

Letmy, ..., my € Z4 be pairwise relatively prime. For any ay, ... ,a; € Z
there is a € Z such that a = a; (mod m;) foralli € [k]. Ifb € Z is also a
solution, then a = b (mod my - - - my,).

Proof.

4
>
>

Let M = [[;cqy mi and M; = M /m; for i € [K].
Since (m;, m;) = 1 whenever i # j, we have (m;, M;) = 1 for i € [k].

In particular, M; (mod m;) is invertible modulo m; and there is n; € Z
such that n;M; = 1 (mod m;).

Seta = Zie[k} a;n;M;. Since m; | M; for i # j, we obtain that

a= E aniM; = amM; = a;  (mod m;),

implying that a satisfies the desired congruence equations.

If there is another solution b € Z such that b = a; (mod m;) for all
i € [k],thena = b (mod my - - -my), since my, ..., my € Z are
pairwise coprime. This completes the proof. [l



Ring isomorphism

Theorem
Letmy,...,my € Z, be pairwise relatively prime. The map
ViZL/my - — L/mZ X - X L/my L
given by
Y(a@ (modmy---my))=(a (modm),...,a (mod my))

is a ring isomorphism.

Proof.
» One easily checks that 1) is a homomorphism of rings.
> To see that ¢ is injective, let a € Z so that ¢)(a (mod my ---my)) = 0.

» In particular,a = 0 (mod m;) for each i € [k], so that m; | a for all
i € [k]. Since (m;, m;) = 1 for i # j, we conclude that m; - - -my | a, so
thata =0 (mod my - - - my,).

» The fact that 1) is surjective is then an immediate consequence of the
Chinese remainder theorem.



Applications of the Chinise reminder theorem

Theorem

Letm = p\' ---pi* € Z. Let f be a polynomial with integral coefficients.
The congruence f(x) = 0 (mod m) is solvable if and only if the
congruences f(x) = 0 (mod p}') are solvable for all i € [k].

Proof.

» If f(x) =0 (mod m) has a solution in integers, then there exists a € Z
such that m | f(a). Since p}' | m, it follows that p!' | f(a), and so the
congruences f(x) = 0 (mod p}') are solvable for i € [k].

» Conversely, suppose that the congruences f(x) = 0 (mod p;}’) are
solvable for i € [k]. Then for each i € [k] there exists a; € Z such that

fla) =0 (mod p}")

Since the prime powers pi', ..., p;* are pairwise relatively prime, the
Chinese remainder theorem tells us that there exists a € Z such that
a = a; (mod p") for all i € [k]. Then f(a) =f (a;) =0 (mod p}") for
all i € [k]. Since f(a) is divisible by each of the prime powers p', it is
also divisible by their product m, and so f(a) = 0 (mod m).

This completes the proof. O



Lagrange’s theorem

Theorem (Lagrange’s theorem)
If G is a finite group and H is a subgroup of G, then |H| divides |G|.

Proof.

> Let G be a group, written multiplicatively, and let ) £ X C G. For
every a € G we define the set aX = {ax : x € X}.

» The map f : X — aX defined by f(x) = ax is a bijection, and so
|X| = |aX| for all a € G. If H is a subgroup of G, then aH is called a
coset of H. Let alH and bH be cosets of the subgroup H. We will show
that the cosets of a subgroup H are either disjoint or equal.

» Indeed, if aH N bH # (), then there exist x, y € H such that ax = by. If
z € aH, then z = ah for some h € H and z = ah = axx " 'h = byx~'h,
but yx~ '/ € H, since H is a subgroup. Thus aH C bH. By symmetry
we also have that pH C g and consequently alH = HH.

» Since every element of G belongs to some coset of H (for example,

a € aH for all a € G ), it follows that the cosets of H partition G. We
denote the set of cosets by G/H. If G is a finite group, then H and G/H
are finite, and |G| = |H||G/H].

» In particular, we see that |H| divides |G| as desired. O



Basic group theory

» Let G be a group, written multiplicatively, and let Hl = {a* : k € Z} for
some a € G. Then 1 = a” € H C G. Since a*a' = a*t' forall k,l € Z,
it follows that H is a subgroup of G. This subgroup is called the cyclic
subgroup generated by a, and written H = (a) = {a* : k € Z}.

» Cyclic subgroups are abelian. The group G is cyclic if there exists an
element @ € G such that G = (a). In this case, the element a is called a
generator of G. For example, the group (Z/7Z)* = (3 + 7Z).

» If a* # a' for all integers k # 1, then the cyclic subgroup {(a) is infinite.

» If there exist integers k and [ such that k < [ and @* = ', then o'~ = 1.
Let d be the smallest positive integer such that a = 1. Then the group
elements 1,a,a?, ..., a?" are distinct. By the division algorithm, for
any n € Z there exist ¢, € Z suchthatn =dg+rand0 <r <d —1.
Since a" = g%t = (ad)q a’ = a’, it follows that

(@) ={a":neZ}={a:0<r<d-1},

and the cyclic subgroup generated by a has order d.

» Moreover, @ = d if and only if k = [ (mod d).

> Let G be a group. We define the order of a € G as the cardinality of the
cyclic subgroup generated by a and write ordg (a) = |{a)|.

> If G = (Z/mZ)* we will abbreviate ord(z,z)x (a) to ord,,(a).



Euler’s theorem and Fermat’s little theorem

Theorem
Let G be a finite group, and a € G. Then ordg(a) = |(a)| divides |G|.

Proof.
By Lagrange’s theorem |(a)| divides |G/, since (a) is the subgroup of G. [J

Theorem (Euler’s theorem)
Letm € 7, and a € 7 be such that (a,m) = 1. Then a¥*"™ =1 (mod m).

Proof.
> We apply the previous theorem to G = (Z/mZ)*, then |G| = p(m).
» By the previous theorem, d = ordg(a) = |(a)| divides ¢(m), and so

a?m = (ad)W(m)/d =1 (mod m).
This completes the proof of Euler’s theorem. O

Theorem (Fermat’s little theorem)

Let p € P be a prime number. If the integer a € 7 is not divisible by p, then
a~' =1 (mod p), which follows from Euler’s theorem applied to m = p.



Subgroups of cyclic groups
Theorem
Let G be a cyclic group of order m, and let H be a subgroup of G. If a is a

generator of G, then there exists a unique divisor d of m such that H is the
cyclic subgroup generated by a’, and H has order m/d.

Proof.

> Let H be a subgroup of G. If H = (1), then H is cyclic and we are
done. We can assume that H # (1) and take a¢ € H with the smallest
d € Z, such that a? # 1. Our aim is to prove that H = (a?) and d | m.

» Obviously (a?) C H. For the converse, take b € H, since H is a
subgroup of G = (a), then b = a” for some n € [m — 1].

> By the division algorithm we have that n = dq + r for some ¢, r € N
such that 0 < r < d.

» Thus b = a" = (ad)qa’, hence ¢’ = a"a=% € H, since a" € H and
a9 ¢ H and H is a subgroup.

> If 0 < r < d, then a” € H, which contradicts the minimality of d. Thus
we must have r = 0 and consequently b = a% € (a?), giving H C (a?).
This shows that H = (a“) and by the Lagrange theorem d | m.

This completes the proof of the theorem. O



Subgroups of cyclic groups

Theorem

Let G be a cyclic group of order m, and let a be a generator of G. For every
k € Z, the cyclic subgroup generated by a* has order m/d, where

d = (m,k), and (a*) = (a®). In particular, G has exactly p(m) generators.

Proof.
» Since d = (k,m), there exist integers x and y such that d = kx + my.
» Then
ad _ akx+my _ (ak)x (am)y _ (ak)x
and so a € (a*) and (a?) C (d*).
> Since d | k, there exists z € Z such that k = dz. Then

and so a* € (a”) and (a*) C (a?).
> Hence, (a*) = (a’) and a* has order m/d.

» In particular, a* generates G if and only if d = 1 if and only if
(m,k) = 1, and so G has exactly ((m) generators.

This completes the proof of the theorem. O



Primitive roots
Definition of order (revised)
» Letm € Z, be such that m > 1, and a € Z such that (a,m) = 1.

» The order of a modulo m, denoted by ord,,(a), is the smallest positive
integer d such that a’ = 1 (mod m). We know that ord,,(a) | o(m).

» The order of a modulo m is also called the exponent of @ modulo m, and
is sometimes denoted by exp,,(a) = ord,,(a).

Definition of primitive roots

» The integer a is called a primitive root modulo m if a has order ¢(m).

> In this case, the ¢(m) integers 1,a,a?,...,a?"™ =" are relatively prime
to m and are pairwise incongruent modulo m.

» In other words, they form a reduced residue system modulo m.

Examples

» If m =7, then ord;(2) = 3, thus 2 is not a primitive root modulo 7, but
ord;(3) = 6 thus 3 is a primitive root modulo 7.

» No number in (Z/87)* is a primitive root modulo 8.



Examples
» For example, if m = 7 and a = 2, then ord;(2) = 3, since

2=1 (mod 7),
2'=2 (mod 7),
2’ =4 (mod7),
2*=1 (mod 7).
» If m =7 and @ = 3, then ord;(3) = 6, since
3%=1 (mod7),
3'=3 (mod7),
3*=2 (mod7),
3’=6 (mod7),
3*=4 (mod 7),
3*=5 (mod7),
3*=1 (mod 7).

» For m = 8 we also have

1°’=32=5"=7"=1 (mod 8).



Division algorithm for polynomials

Theorem (Exercise!)
Let IF be a field. If f (x) and d(x) are polynomials in F[x] and if d(x) # 0,
then there exist unique polynomials q(x) and r(x) such that

f(x) = d(x)g(x) + r(x),

and
> cither r(x) = 0;
» or the degree of r(x) is strictly smaller than the degree of d(x).

Theorem (Exercise!)

Let f(x) € Fx] be such that f(x) # 0, and let No( f) denote the number of
distinct zeros of f (x) in F. Then Ny( f) does not exceed the degree of f(x),
that is,

No(f) < deg(f).



Subgroups of the multiplicative group of a field

Theorem
Every finite subgroup of the multiplicative group of a field is cyclic.
Proof.

> LetFF be a field and let F* := T \ {0} be its multiplicative group.

>
>

Let G be a finite subgroup of F* and assume that |G| = m.

If a € G, then ordg(a) is a divisor of m. For every divisor d of m, let
¥(d) :=|{b € G :ordg(b) = d}|.

If ¢ (d) # 0, then there exists an element a € G of order d, and every
element of the cyclic subgroup (a) generated by a satisfies a? = 1.

By the previous theorem, the polynomial
fx) =x? —1 €T,

has at most d zeros. Hence, every zero of f(x) must belong to the cyclic
subgroup (a), otherwise we would have more than d zeros for f(x),
which is impossible.

In particular, every element of G of order d must belong to (a).



For any prime p € P primitive roots (mod p) exist

» We know that a cyclic group of order d has exactly ¢(d) generators.
Therefore, 1(d) = 0 or ¥(d) = ¢(d) for every divisor d of m.
> Since every element of G has order d for some divisor d of m, we have

Do) =m.

d|m

> o(d) =m,

dlm
and so ¢ (d) = (d) for every divisor d of m, since ¢(d) < p(d).
» In particular, ¥)(m) = ¢(m) > 1, and so G is a cyclic group of order m.
This completes the proof of the theorem. O

» Also we know that

Theorem

For every prime p € P, the multiplicative group of the finite field 7./pZ is
cyclic. This group has o(p — 1) generators. Equivalently, for every prime
p € P, there exist (p — 1) pairwise incongruent primitive roots modulo p.

Proof.
This follows from the previous theorem, since |(Z/pZ)*| = p — 1. O



Examples
» By the structure theorem of subgroups in cyclic groups, if g is a
primitive root modulo p, then gf is a primitive root iff (k,p — 1) = 1.
» For example, for p = 13 there are ¢(12) = 4 integers k such that
0<k<1land(k,12) =1, namely, k = 1,5,7, 11, and so the four
pairwise incongruent primitive roots modulo 13 are

2'=2 (mod 13),
2°=6 (mod 13),
27=11 (mod 13),
2'"'=7  (mod 13).
> The following table lists the primitive roots for the first six primes.

o(p — 1) | primitive roots
1

2

2,3

3.5

2,6,7,8
2,6,7,11
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Primitive roots of composite moduli form =2 orm = 4

Theorem
There exists a primitive root modulo m = 2% if and only if m = 2 or m = 4.

Proof.

» We note that 1 is a primitive root modulo 2, and 3 is a primitive root
modulo 4. For k > 3 we prove that there is no primitive root modulo 2.

> Since ¢ (2¢) = 2¢7!, it suffices to show by induction on k > 3, that

2k72

@ =1 (mod2") foranyodd acZ, ()
» Ifk =3, thenm = 8and 1> =3?> =52 = 7> = | (mod 8), thus the
base case follows. Let k > 3, and suppose that (¥) is true.

> Thena® ~ — 1 is divisible by 2¥. Since a € Z., is odd, it follows that

k—2 .
a*>  + 1is even. Therefore,

azk_l —1= (azk_z — l) (azk_z + 1)

is divisible by 271, and so @ ' =1 (mod 2¢+1).

This completes the induction and the proof of theorem. O



Primitive roots to composite moduli

Theorem
Let m € Z,. be not a power of 2. If m has a primitive root, then m = p* or
2pF, where p € P is an odd prime and k € Z...

Proof.
» Leta,m € Z be such that (a,m) = 1 and m > 3. Suppose that

m=mm,, where (m;,mp)=1 and m; >3,m >3.
» Then (a,m;) = (a,mz) = 1. Since ¢(m) is even for m > 3, then

_— @(zm) _ %0("11)2%0 (m2) €z,

» Consequently, by Euler’s theorem, we have
a?™) =1 (mod m)

and so

(m2)/2
a' = (a‘p(’"l)y& ’ 1 (mod my).



Proof

>

>

Similarly,
(m1)/2
a' = (a‘o('"z))w o (mod my).

Since (my,my) = 1 and m = mym,, we have
a’"=1 (mod m)

and so the order of @ modulo m is strictly smaller than ¢(m).

Consequently, if we can factor m = m;m,, then there does not exist a
primitive root modulo m.

In particular, if m is divisible by two distinct odd primes, then m does
not have a primitive root.

Similarly, if m = 2/p¥, where [ > 2, then m does not have a primitive
root.

Therefore, the only moduli 7 # 2! for which primitive roots can exist
are of the form m = p* or m = 2p* for some odd prime p.

This completes the proof of the theorem.



Exponential increase in the order

Theorem
Let p € P be an odd prime, and let a # +1 be an integer not divisible by p.
Let d = ord,(a) and let ko be the largest integer so that a® = 1 (mod p*°).
Then
d if1 <k <k
ord,(a) = i lf ==
dp=% ifk > k.
Proof.
» There exists up € Z such that a® = 1 + p*ug and (ug, p) = 1.
> Letk € [ko], and let v = ordyx (a). If @ = 1 (mod pF), then a” =
(mod p), and so d | v. Since k € [ko], we have a’ = 1 (mod p*), and

so v | d. It follows that v = d and ord, (a) = d for k € [ko] as desired.
> Letj € N. We shall show that there exists u; € Z such that

a” =1 +p ™ and  (w,p) =1 )
» The proof is by induction on j € N. The assertion is true for j = 0 by

our choice of ky. Suppose we have (*) for some integer j > 0. We will
show that (*) remains true with j + 1 in place of j.



Proof

» By the binomial theorem, there exists v; € N such that
P
i . P . e .
A (l +p7+kouj) — 14 p oy Z (l;)ptwko)u}
i=2

=14 p/ o 4 p 0y = 1 PR (4 pyy)

» Setting u;1 = u; + pv; we have (u;11,p) = 1, giving (*) for all j € N.
» By induction on k > ky we prove the second part of the theorem. The
base case for k = ko follows from the first part. Let k > ko + 1 and

j =k —ko > 1 and suppose that ord -1 (a) = dp/~".
» Let v, = ord,(a) and note that

a@*=1 (modp’) = a*=1 (modp‘)
and so dp/~! divides vy.
» Since .
a? =14 p w1 #£1  (mod p)
it follows that dp/~! is a proper divisor of v;. On the other hand,
a? =1 +pui =1 (mod p*)

and so v; divides dp/. It follows that the order of @ modulo p* is exactly
Vi = dp/ = dp*—*. This completes the proof. O



Primitive roots of composite moduli for m = p* or m = 2p*

Theorem
Let p € P be an odd prime.

» [f g is a primitive root modulo p, then either g or g + p is a primitive
root modulo p* for all k > 2.

> [f g is a primitive root modulo p* and h € {g, g erk} is odd, then his a
primitive root modulo 2p~.
Proof.
» Let g be a primitive root modulo p. Then ord,(g) =p — 1.
» Let kg € Z be the largest integer such that p* divides g"~! — 1.
» By the previous theorem, if k) = 1, then the order of g modulo pk is
(p—DpFt=9p (pk), and g is a primitive root modulo p* for all k > 1.

» If kg > 2, then g”~! = 1 + p?v for some v € Z. By the binomial
theorem, we have

wrpr =3 (,,; 1) T =g 0 - 10¢ 7 (mod p)

=0
=1+pv+g % — ¢ ’p (modp’)
=1—¢"%p (modp’)#1 (modp’).



Proof

v

This proves that g + p is a primitive root modulo p such that
(g+pP'=1+4+puy and (ug,p)=1.

Therefore, g + p is a primitive root modulo p* for all k € Z_.
Next we prove that primitive roots exist for all moduli of the form 2p*.

If g is a primitive root modulo p*, then g + p* is also a primitive root
modulo p* by the binomial theorem. Since p* is odd, it follows that one
of the two integers g and g + p¥ is odd, and the other is even.

Let h € {g, g+ p*} be odd. Since (g + p*,p*) = (g,p*) =1, it
follows that (h,2p*) = 1. The order of 2 modulo 2p* is not less than

¢ (p*), which is the order of h modulo p*, and not greater than ¢ (2p).

However, since p is an odd prime, we have
v (2") = ¢ (v")

and so & has order ¢ (2p*) modulo 2p*, that is, h is a primitive root
modulo 2p¥. This completes the proof. O



Primitive roots using the group theoretic language
Gathering what has been proven about primitive roots can be subsumed in
the following result.

Theorem

Ifqg € {1,2,4,pk 2p*}, where p € P is an odd prime number and k € 7.,
then the multiplicative group (Z/qZ)* is cyclic. In other words, there exists
a primitive root modulo q, that is, a € (Z/qZ)* such that ord,(a) = ¢(q).
Remark

» We know that (Z/2*7)* is cyclic if and only if k € [2]. For k = 2 we
can see that all elements have order 2.

» However, there do exist odd integers of order 22 in (Z/2*Z)*.

Proposition
For every k € 7.1, one has that 5% = 1 + 3 - 2%2 (mod 2¢+4).
Proof.
» The proof is by induction on k € Z .
> Fork=1wehave 5> =25=1+3-23 (mod 2%).
> Fork=2wehave 5 = 625=1+48+576=1+3-2* (mod 2°).



(Z)2¥7)* = 7./27 x 7./]2¥*7Z,

» If the theorem holds for k € Z, then there exists u € Z such that
52 = 143282 ok = 1 4 2523 4 4u).
» Since 2k +4 > k + 5, we have
52 = (szk)2 = (14223 +4u))’ = 1+ 233 4+ 4u)  (mod 2%+4)
=1+3-2"  (mod 2¢1?) as desired. O

Theorem
Ifk > 3, then 5 has order 252 modulo 2%. One can say even more.

» Ifa=1 (mod 4), then there exists a unique integer
i€ {07 1,...,22— 1} such that

a=5 (mod 2.

» Ifa =3 (mod 4), then there exists a unique integer
i€{0,1,...,2°2 — 1} such that

a= -5 (mod 2.



Proof
» In the case k = 3, we observe that 5 has order 2 modulo 8, and
1=5" (mod 8),
3=-5" (mod 8),
5=5" (mod 8),
= -5 (mod 8).

» Let k > 4. By the previous proposition, we have

ST =143k (mod 2+2)
=1 (mod 2"),

and
S =143 26! (mod 21
=1+3-2" (mod 2%)
#1 (mod 2Y).



Proof

» Therefore, 5 has order exactly 2¢~2 modulo 2¥, and so the integers 5'
are pairwise incongruent modulo 2* fori € {0, 1,...,28F2 — 1}

» Since 5' = (mod 4) for all i € Z., and since exactly half, that is,
2¢=2_of the 2*~! odd numbers between 0 and 2¥ are congruent to 1
modulo 4, it follows that the congruence

"=a (mod 2"

is solvable for every a = 1 (mod 4).
» Ifa =3 (mod 4), then —a =1 (mod 4) and so the congruence

—a=5 (mod?2) <+= a=-5 (mod?2")
is solvable. This completes the proof. O

Remark

» If k > 3 then the previous theorem can be restated as follows
(Z)2*7)* = (1) x (5) = Z)27Z x 7./]2**Z,

where (a) denotes the cyclic subgroup of (Z/2"Z) " generated by a for
a=—landa=>5.



