Analytic Number Theory
Lecture 6

Mariusz Mirek
Rutgers University

Padova, March 27, 2025.

Supported by the NSF grant DMS-2154712,
and the CAREER grant DMS-2236493.



Index with respect to the primitive roots

Example
The following table lists the primitive roots for the first six primes.

p | o(p—1) | primitive roots
2 1 1

3 1 2

5 2 2,3

7 2 35

11 4 2,6,7,8

13 4 2,6,7,11

Index with respect to the primitive roots

» Letp € P be a prime, and let g be a primitive root modulo p. If a € Z is
not divisible by p, then there is a unique k € {0, 1,...,p — 2} so that

a=g" (modp).

» This integer k is called the index of a with respect to the primitive root
g, and is denoted by k = ind,(a).



Properties of the index

» If ki, k, € Z are such that k; < k, and

ki

a=g Egk2

(mod p),

then

gl =1 (mod p),

and since g is a primitive root and ¢(p) = p — 1, thus
ki =k, (modp—1).
» Ifa=g" (mod p)and b = g’ (mod p), then
ab = g'g' = ¢t (mod p)
and so
ind,(ab) = k+ 1 = ind;(a) +indy () (mod p —1).

» The index map ind, is also called the discrete logarithm to the base g
modulo p.



Example
» For example, 2 is a primitive root modulo 13. Here is a table of ind;(a)

fora € [12]:
a | indy(a) || a | indy(a)
1 0 7 11
2 1 8 3
3 4 9 8
4 2 10 10
5 9 11 7
6 5 12 6

» By the structure theorem of subgroups in cyclic groups, if g is a
primitive root modulo p, then g* is a primitive root iff (k,p — 1) = 1.

» For example, for p = 13 there are ¢(12) = 4 integers k such that
0<k<1land(k,12) =1, namely, k = 1,5,7, 11, and so the four
pairwise incongruent primitive roots modulo 13 are

2'=2 (mod 13),
2°=6 (mod 13),
2”=11 (mod 13),
2'"'=7  (mod 13).



Power residues

» Leta,k,m € Z be integers such that m > 2.k > 2, and (a,m) = 1. We
say that a is a k-th power residue modulo m if there exists an x € Z
such that

*=a (mod m).

» If this congruence has no solution, then a is called a k-th power
nonresidue modulo m.

» Letk =2 and (a,m) = 1. If the congruence x> = a (mod m) is
solvable, then a is called a quadratic residue modulo m. Otherwise, a is
called a quadratic nonresidue modulo .

» For example, the quadratic residues modulo 7 are 1, 2, and 4; the
quadratic nonresidues are 3,5, and 6. The only quadratic residue
modulo 8 is 1, and the quadratic nonresidues modulo 8 are 3,5,4 and 7.

» Letk = 3 and (a,m) = 1. If the congruence x*> = a (mod m) is

solvable, then a is called a cubic residue modulo m. Otherwise, a is
called a cubic nonresidue modulo m.

» For example, the cubic residues modulo 7 are 1 and 6; the cubic
nonresidues are 2, 3,4, and 5. The cubic residues modulo 5 are 1,2, 3,
and 4; there are no cubic nonresidues modulo 5.



Power residues modulo primes

Theorem
Let p € P be a prime number, k > 2, and d = (k,p — 1). Let a € Z be not
divisible by p. Let g be a primitive root modulo p.

» Then a is a k-th power residue modulo p if and only if
indg(a) =0 (mod d),

if and only if
a?= V4 =1 (mod p).

» Ifais a k-th power residue modulo p, then the congruence
*=a (mod D) (*)

has exactly d solutions that are pairwise incongruent modulo p.

» Moreover, there are exactly (p — 1)/d pairwise incongruent k-th power
residues modulo p.



Proof

Let I = ind,(a), where g is a primitive root modulo p. Congruence (*)
is solvable if and only if there exists y € Z such that

@ =x (modp) and gF=x=a=g" (modp).

This is equivalent to ky = [ (mod p — 1), since ord,(g) = p — 1.
This linear congruence in y has a solution if and only if

indg(a) =1=0 (modd), where d=(k,p—1).

Thus, the k-th power residues modulo p are precisely the integers in the
(p — 1)/d congruence classes g + pZ fori € {0,1,...,(p —1)/d — 1}.
Moreover,

aP=D/d = gp=Dl/d = (mod p)

if and only if

(p—1)I
d

Finally, if the linear congruence ky = [ (mod p — 1) is solvable, then it
has exactly d solutions y that are pairwise incongruent modulo p — 1,
and so (*) has exactly d solutions x = g” that are pairwise incongruent
modulo p. This completes the proof. OJ

=0 (modp—-1) <<= indg(a)=1=0 (modd)



Examples
» For example, letp = 19 and k = 3. Thend = (k,p — 1) = (3,18) = 3.
» We can check that 2 is a primitive root modulo 19, and so a is a cubic
residue modulo 19 if and only if 3 divides ind;(a).
» Since —1 =2° (mod 3) and indy(—1) = 9, it follows that —1 is a
cubic residue modulo 19.

» The solutions of the congruence x> = —1 (mod 19) are of the form
x=72" (mod 19), where 0 <y < 17 and 3y =9 (mod 18). Then
y =3 (mod 6), and soy = 3,9, and 15. These give the following three
cube roots of —1 modulo 19:

8§=2° (mod 19),
18=2° (mod 19),
12=25 (mod 19).

Corollary

Let p € P be an odd prime number, and let k > 2 be an integer such that
(k,p — 1) = 1. If (a,p) = 1, then a is a k-th power residue modulo p, and
the congruence x* = a (mod p) has a unique solution modulo p.



Quadratic residues
> Letp € [P be an odd prime and a € Z not divisible by p. Then a is
called a quadratic residue modulo p if there exists x € Z such that
¥=a (mod p). *)
» If this congruence has no solution, then a is called a quadratic
nonresidue modulo p. Thus, an integer a is a quadratic residue modulo
p if and only if (a,p) = | and a has a square root modulo p. By the
previous theorem, exactly half the congruence classes relatively prime
to p have square roots modulo p.
> We define the Legendre symbol for the odd prime p as follows: For any
integer a we set

1 if (a,p) = 1 and a is a quadratic residue modulo p,
(a|p) =< —1if (a,p) = 1 and a is a quadratic nonresidue modulo p,
0 if p divides a.
» The solvability of congruence (*) depends only on the congruence class
of a (mod p), that is,
(@a|p)=(b|p) if a=b (modp),

and so the Legendre symbol is a well-defined function on the
congruence classes Z/pZ.



Legendre symbol: simple calculations

> We observe that if p € IP is an odd prime, then, the only solutions of the

congruence x> = 1 (mod p) are x = £1 (mod p).

> Ife,e’ € {—1,0,1} ande =&’ (mod p), thenp | (¢ — '), and so
¢ = & In particular, if (a | p) =& (mod p), then (a | p) = €.

Theorem
Let p € P be an odd prime. For every integer a € Z, we have

(a|p)=aP"? (mod p).
Proof.
» If p | a, then both sides of the congruence are 0.
» If p does not divide a, then, by Fermat’s theorem, we have
(a@*l)/z)z =a"' =1 (mod p) and so a?~/2 = +1 (mod p).
> Applying the previous theorem with k = 2, we have
a?~V/2=1 (modp) ifandonlyif (a|p)=1,

and consequently we must have
a? V2 =_1 (modp) ifandonlyif (a|p)=—1.
This completes the proof. O



Legendre symbol is completely multiplicative

Theorem
Let p € P be an odd prime, and let a,b € Z. Then (ab | p) = (a | p)(b | p).

Proof.
» If p divides a or b, then p divides ab, and
(ab|p)=0=(a|p)|p).
» If p does not divide ab, then, by the previous theorem, we obtian
(ab | p) = (ab)"""/*  (mod p)
= (= D/2p(p—1)/2 (mod p)
(alp)(®|p) (modp).

» The result follows immediately from the observation that each side of
this congruence is 1. See the remark before the previous theorem.

This completes the proof of the theorem.



Legendre symbol: specific calculations for (—1 | p)

> Previous theorem implies that the Legendre symbol (- | p) is
completely determined by its values at —1,2, and odd primes gq.

» If a is an integer not divisible by p, then we can write
a = j:zroq;'qu .. .qlr(k’
where ¢, . . ., g are distinct odd primes not equal to p. Then

(alp)=(x1[p)2|p)"(q1|p)" (g | P)™"

Theorem
Let p € P be an odd prime number. Then

- 1 i p=1 (mod4),
(11’){—1 if p=3 (mod4).

Equivalently,
(1 1p) = (-1)I"2



Legendre symbol: specific calculations for (2 | p)

Proof.
» We observe that

(_1)(17—1)/2 _ 1 if p= 1 (mod 4),
-1 if p=3 (mod 4).

» By the previous theorem with a = —1, we obtain
(=1]p)=(=1)?""? (mod p).
This completes the proof, since both sides of this congruence are £1.

Theorem
Let p € P be an odd prime. Then

1 ifp=+1 (mod 8),
(Zp){—l ifp=+43 (mod 8).

Equivalently,
(2]p) = (~)¥ I,



Proof

» Consider the following congruences:

p—1=1(-1)" (mod p),
2=2(—1)* (mod p),
p—3=3(-1) (mod p),
4=4(-1* (mod p),
r=P2 5 (mod p),
2

Wherer:p—’%lorr:‘%l.

> Multiply both sides by each integer on the left, which is even. Then

246 (p—1)= (%)!(—1)‘*”"”5” (mod p),

— @’ -1
or equivalently 2" (55 = (B (=1) "5 : (mod p).

- 2
» Since (251)! £ 0 (mod p) we obtain 2 = (—1)(p T (mod p)
2

1 =1

=(—1)" ®  (mod p) as desired.

» By Euler’s criterion, (2 | p) =27



Gaussian sets modulo p

» Letp € P be an odd prime, and let S be a set of (p — 1)/2 integers. We
call S a Gaussian set modulo pif SU—-S=SU{—s:s€ S}isa
reduced system of residues modulo p.

» Equivalently, S is a Gaussian set if for every integer a not divisible by p,
there exist unique s € Sand e € {1, —1} such thata = es (mod p).

» For example, the sets {1,2,...,(p — 1)/2} and {2,4,6,...,p — 1} are
Gaussian sets modulo p for every odd prime p € P.

» If Sis a Gaussian set, 5,5’ € S, and s = £+ (mod p), then s = s'.

Lemma (Gauss lemma)

Let p € P be an odd prime, and let a € 7 be not divisible by p. Let S be a
Gaussian set modulo p. For every s € S there exist unique integers u,(s) € S
and g,(s) € {1, —1} such that

as = g,(8)uq(s)  (mod p).

Moreover,

(alp)=TTeals) = (=),

sES

where m is the number of s € S such that ,(s) = —1.



Proof

Since S is a Gaussian set, for every s € S there exist unique integers u,(s) € S
and g,(s) € {1, —1} such that as = £4(s)u.(s) (mod p).
We show that s — u,(s) is one-to-one. Indeed, if u,(s) = u, (s") for some
s,s' € 8, then

as’ = ¢, (s') Uy (s') =g, (s') uqa(s) (mod p)

=4 (5) ca(s)ea(s)ua(s)  (mod p) = +as (mod p).

Dividing by a, we obtain s’ = £s (mod p) and so s = s. It follows that the
map u, : § — S is a permutation of S, and so [] ¢ s = [[,cs #a(s).

Therefore,
a2 Hs = Has (mod p) = Hsa(s)ua(s) (mod p)
SES sES SES
= H ea(s) H uy(s) (mod p)
sES SES
= H a(s Hs (mod p)
SES SES

Dividing by ], s, the proof follows, as we obtain

(a|p)=d?~"?= Hs (mod p). O

SES



Example

> We shall use Gauss’s lemma to compute the Legendre symbol (3 | 11).
> Let S be the Gaussian set {2,4,6,8,10}. We have

3:2=6 (mod 11),
3.4=(—1)10 (mod 11),
3-6=(—1)4 (mod 11),
3-8=2 (mod 1),
3-10=8 (mod 11)

» The number of s € S with e3(s) = —1 ism = 2, and so

Bl = (-1 =1,

that is, 3 is a quadratic residue modulo 11.

» There are exactly two incongruent solutions of x> = 3 (mod 11),
namely
52=6°=3 (mod 11).

and so 5 and 6 are the square roots of 3 modulo 11.



Basic definitions

» Let G be a finite abelian group, written additively, and let
Ay, ...,A; C G. The sum of these sets is the set

Al+--+Ar={a+--+a:a; €A fori e [k]}.

» If Gy, ..., Gy are subgroups of G, then the sumset G; + - - - + G is a
subgroup of G.

> We say that G is the direct sum of the subgroups Gy, ..., Gy, written
G =G| @ ® Gy, if every element g € G can be written uniquely in
the form g = gy + - - - + g«, where g; € G, for i € [k].

> IfG:Gl@---@Gk,theMG\:\G1|---|Gk|.

» The order of an element g in an additive group is the smallest positive
integer d € Z, such that dg = 0. We know that d divides |G]|.

> Letp € IP be a prime number. A p-group is a group each of whose
elements has an order that is a power of p.

» For every prime number p € P, let
G(p) :={g € G :ordg(g) = p' forsome [ € Z, }.

Then G(p) is a subgroup of the abelian group G.



The structure of finite Abelian groups

Theorem (Structure theorem for finite Abelian groups)
Every finite abelian group is a direct sum of cyclic groups.

This result will be a consequence of the next two theorems.

Theorem

Let G be a finite abelian group, written additively, and let |G| = m. For

every prime number p € P, let G(p) be the set of all elements g € G whose
order is a power of p. Then

G =Gy

Proof. plm
> Letm = [iciy pi, and define m; = mp; " for i € [k].
» Then (my,...,mg) = 1, and by the GCD theorem there exist
ui,...,u; € Zsuch that myuy + - - - + muy, = 1.

> Let g € G, and define g; = mu;g € G for i € [k]. Since
pigi = mug = 0, it follows that g; € G(p;). Moreover,

g = (muuy + -+ muy) g = myug + - - - + mug
=g+ 4+aueGp)+ - +G(p).



Proof

v

Thus we have proved that G = G (p1) + -+ - + G (px) -

Suppose that
gt +a=0,

where g; € G (p;) fori € [k].

There exist r1, . .., 7 € N such that g; has order p; for i € [k]. Let
di =[] ri"
i€ k]
i#]
Since djg; = 0 for i € [k] with i # j, it follows that

0=di(g1+-+g)=dg
We proved that d;g; = 0 for all j € [k], thus p;f | d;, but (p;f, dy) =1,
which is only possible whenr; = ... =r, =0
Hence, g; = 0 for all j € [k].
Thus, 0 has no nontrivial representation in G = G (p;) + - - + G (px).
We conclude that G is the direct sum of the subgroups G (p;).



Useful lemma
Lemma
Let G be a finite abelian p-group. Let g € G be an element of maximum
order p", and let G| = (g1) be the cyclic subgroup generated by g;. Let
h € G and suppose that h + Gy € G/Gy has order p’, then there exists an
element g € G such that g + Gy = h+ Gy and g has order p" in G.
Proof.

» If h + G has order p” in G/Gy, then the order of 4 in G is at most p”
(since p™ is the maximum order in G) and at least p”.

» Since Gy =p" (h+ Gy) = p"h + Gy, it follows that p"h € Gy, and so
p"h = ug, for some positive integer u < p"' (since g; has order p™).

» Write u = p*v, where (p,v) = 1 and 0 < s < r;. Then vg; also has
order p't, and so p*vg; has order p"*~* in G. Then p"h = p*vg; has order
P 7% in G, and so & has order p"' "% < p"t. It follows that r < s, and

ph=pvgi=p" (p"vae1) =p'gh,

where g} = p*~"vg € Gy. Takingg =h—g|,weseeg+G; =h+G,.
» Moreover, p'g = p"h — p"g| = 0, and so the order of g is at most p". On

the other hand, g + G has order p" in the quotient group G /Gy, and so

the order of g is at least p”. Therefore, g has order p" as desired. [



Structure of finite abelian p-groups

Theorem
Every finite abelian p-group is a direct sum of cyclic groups.

Proof.

>

The proof is by induction on the cardinality of G. Let G be a finite
abelian p-group. If G is cyclic, we are done. If G is not cyclic, let
g1 € G be an element of maximum order p’', and let G, := (g;).

The quotient group G/G; is a finite abelian p-group, and
G
1 <|G/Gy| = Gl < |G|
P
Therefore, the induction hypothesis holds for G/Gy, and so
G/Gi=H&- - eH

where Hj is a cyclic subgroup of G/G; of order p” fori € [k] \ {1}.
Moreover,

G Lo
B 6/ =
i=2

p"



Proof

By the previous lemma, for each i € [k] \ {1} there exists g; € G such
that g; + G, generates H; and ordg(g;) = p"i. Let G; := (g;).

Then |G;| = p" for i € [k]. We shall prove that G = G| & - - - & Gy.
We begin by showing that G = G; +-- -+ G. If g € G, then g+ G, €
G/Gy, and there exist u, . .., ux € Z such that 0 < u; < p" — 1 for
eachi € [k] \ {1}, and

g+Gi = (g2 +G)® - - Dur (g + G1) = (u2g2 + - - + wegi) + Gy
It follows that we can find u; € Z such that 0 < u; < p" — 1 and

g — (g + - +wmg) =mg € Gy,
and so
g=uwg +ugr+ - +ug €Gi+---+ G
Therefore, G = G| + - - - + Gy. Since

k
G| =Gi+ -+ G < |Gyl |G| = [[P" = G|
i=1
it follows that every element of G has a unique representation as an
element in the sumset G; + - - - + Gy, and so G = G; b + - - - + BGy.
This completes the proof. O



Characters of finite Abelian groups
» Let G be a finite abelian group, written additively. A group character is
a homomorphism y : G — C*, where C*is the multiplicative group of
nonzero complex numbers.

» Then x(0) = 1 and x (g1 + g2) = x (g1) x (g2) forall g;, g, € G.
» If x is a character of a multiplicative group G, then x(1) = 1 and

X (8182) = x (81) x (g2) for all g1, 8, € G.
> We define the character o on G by xo(g) = 1 forall g € G. If G is an
additive group of order n and if g € G has order d, then

x(8)" = x(dg) = x(0) =1,

and so x(g) is a d-th root of unity, and also x(g) is an n-th root of unity
for every g € G, since d | n. Hence, we have |y(g)| = 1 forall g € G.
» We define the product of two characters x; and ; by

xix2(8) = xi1(g)x2(g) forall geG.

In is not difficult to see that this product is associative and commutative.
» The character Y is a multiplicative identity, since

xox(8) = xo(8)x(g) = x(g)
for every character y and g € G.



Characters of finite Abelian groups
» The inverse of the character y is the character y~' defined by
x'(g) = x(=2),

I =y, since

and indeed we have xx~
XX~ (g) = x(g)x ' (g) = x(g)x(~g)
=x(g—8 =x(0)=1
= Xo(8)-
» The complex conjugate of a character y is the character y defined by
X(g) = x(g)-
Since |x(g)| = 1 for all g € G, we have
XX(8) = x(8)X(g) = Ix(8)I> = 1= xo(g),
and so for every character x and all g € G we have
x'(8) = X(g)-

> It follows that the set G of all characters of a finite abelian group G is
an abelian group, called the dual group or character group of G.
» We prove that G is isomorphic to G for every finite abelian group G.



The dual group of a cyclic group

Theorem
The dual of a cyclic group of order n is also a cyclic group of order n.
Proof.
» Recall that e(x) = €™ for any x € R and we will write ¢, (x) = e(x/n).
» The nth roots of unity are the complex numbers 1,¢,(1),...,e,(n — 1).
> Let G = {jgo : j € N.,} be a cyclic group of order n with generator g.
> For every a € Z, we define 1, € G by v, (jgo) := en(a@j).
» We can easily verify that 1,4, = ¥4, and ¢, ! = 1_,, and ¢, = 1y

v

ifand only if a = b (mod n). It follows that ¢, = 9{ for any a € Z.

Ifx € @, then y is completely determined by its value on gy. Since
X (go) is an n-th root of unity, we have x (go) = e,(a) for some
a € N, and so x (jgo) = e,(qj) for all j € Z. Thus, x = 1, and

G:{wa:a€N<n}:{w?:a€N<n}
is also a cyclic group of order n, and the map G > a — ¥, € G defines

the isomorphism between G and G.

It is a simple but critical observation that if g is a nonzero element of a
cyclic group G, then v (g) # 1.



The dual group of a finite abelian group

Theorem
Let G be a finite abelian group and let Gy, . . ., Gy be subgroups of G such
that G = G| & - - - @& Gy. For every character x € G there exist unique
characters x; € @ suchthatifg € Gand g = g1+ - - + gy with g; € G; for
i € [k], then

x(8) =x1(g1) -~ xx (8k) - *)

Moreover, G and G x --- X Gy are isomorphic.

Proof.

> If x; € G, fori € [k], then we can construct amap x : G — C* as
follows. For each g € G there exist unique elements g; € G; such that
g=g1+ -+ gk Define

X(8) =x(g1+-+g)=x1(81) - xe(8g)- (**)
» Then y is a character in @, and this construction induces a map
\IJ:@X--~><@—>@,

defined by ¥(x1, ..., xx) := X, where Y is given as in (**).



The dual group of a finite abelian group

» If is easy to see that U is a one-to-one homomorphism. Indeed, if
(X155 xK) # (X1 - - -5 Xz)» then without loss of generality we can
assume that x; # x|. This means that there exists g; € G, such that
x1(g1) # X (g1). It suffices to take g = g + 0 + ... + 0 to see that

U(x1,--x0)(8) = x1(g1) # x1(81) = Y (X7 - -5 X))

» We shall show that the map ¥ is onto. Let y € G. We define the
function x; on G; by

Xi(gi) = x(gi) forall g; €G;.

» Then y; is a character in @ IfgeGandg =g+ -+ g with
gi € Gy, then
x(g) =x(gr+-+g)=x(81) - x(8)=x1(81)xx(8&)-

» It follows that
\II(Xla"ka) =X

and so WV is onto.



Duality theorem for finite Abelian groups

Theorem (Separation points property)
Let G be a finite abelian group. If 0 # g € G, then there is x € G so that x(g) # 1.

Proof.

> We write G = G| @ - - - @& Gy as a direct product of cyclic groups.

» If g # 0, then there exist g € Gi,...,gx € Gy suchthatg =g + - - - + g,
and g; # 0 for some j € [k].

> Since the group G; is cyclic, there is x; € @_,- such that x; (g;) # 1. For
i € [k] \ {j}, let x; € G; be the character defined by x; (g1) = 1 forall g; € G;.

Ifx = (xi,- .., xe) € G, then x(g) = x; (g) # 1.
This completes the proof of the theorem. O

Theorem (Duality theorem)
A finite abelian group G is isomorphic to its dual, that is, G = G.

Proof.

» We know the dual of a finite cyclic group of order 7 is also a finite cyclic group
of order n. We also know that a finite abelian group G has cyclic subgroups
Gi,...,Gysuchthat G = G & - - - @ Gy. Finally we see that

—~

@EGIX---X@EGIx---kaEGIEB---@Gk:G. O



Pairing

> Let G be a finite abelian group of order n, and I, be the group of nth
roots of unity. There is a pairing map (-, ) : G x G — T', defined by

(@, x) = x(a).

» This map is nondegenerate in the sense that:
» (a,x) =1 for all group elements a € G if and only if x = xo;
» (a,x) = 1 for all characters x € Gifand only if a = 0 by the separation
points property.

> For each a € G, the function (a, -) is a character of the dual group G,
that is, (a,-) € G. The map A : G — G defined by a (a,-) or,
equivalently,

Ala)(x) = (a,x) = x(a),
is a homomorphism of the group G into its double dual G.

» Since the pairing is nondegenerate, this homomorphism is one-to-one.

> Since |G| = |G| = |G|, it follows that A is a natural isomorphism of G

onto @



Orthogonality relations
Theorem R
Let G be a finite abelian group of order n, and let G be its dual group.
> Ifx € G, then
nifx = xo,
dox@ =9,
= ifX # xo-
» Ifa e G, then
n ifa=0,
> x(a) = )
~ 0 ifa#0.
x€G

Proof.
> Forx € @, let

S() =D x(a).

acG

If x = xo, then S (x0) = |G| = n. If x # Xo, then x(b) # 1 for some b € G,
and so S(x) = 0, since

X(B)S(x) = x(b) > x(a) =Y x(ba) =D x(a) = S(x).

acG acG acG



Proof

» Fora € G, let
T(a) = x(a)

XG@

> Ifa = 0, then T(a) = |G| = n. If a # 0, then x'(a) # 1 for some
X' € G (by the separation point property), hence

X'(@)T(a) = X'(a) ) x(a)

xe@

=) xX'x(a)

xeCG

=Y xla)

xe@
=T(a)

and so T(a) = 0. This completes the proof.



Orthogonality relations

Theorem

Let G be a finite abelian group of order n, and let G be its dual group.
> If x1,x2 € G, then

— i xa = xe,
;Xl(d)m(a) a {0 X1 # xe-

> Ifa,b e G, then

S xa@)x(b) = { ya=>,

= 0 ifab.

Proof.

» These identities follow immediately from the previous theorem, since

xi(@)xz(a) = x1x; '(a), and  x(a)X(b) = x(a - b).

This completes the proof.



Examples

» The character table for a group has one column for each element of the
group and one row for each character of the group.

» For example, if Cy4 is the cyclic group of order 4 with generator gy, then
the characters of C4 are the functions

Ya (jgo) = ea(aj) = i

fora € {0,1,2,3}, and the character table is the following:

0] 8o | 280 | 380
Gl T 1] 1] 1
ST i =1] =i
G [T =1 1] =1
s (1] =i =1] i

» Note the that sum of the numbers in the first row is equal to the order of
the group, and the sum of the numbers in each of the other rows is 0.

» Similarly, the sum of the numbers in the first column is the order of the
group, and the sum of the numbers in each of the other columns is 0.
This is a special case of the orthogonality relations.



