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Index with respect to the primitive roots
Example
The following table lists the primitive roots for the first six primes.

p φ(p − 1) primitive roots
2 1 1
3 1 2
5 2 2,3
7 2 3,5

11 4 2, 6, 7, 8
13 4 2, 6, 7, 11

Index with respect to the primitive roots
▶ Let p ∈ P be a prime, and let g be a primitive root modulo p. If a ∈ Z is

not divisible by p, then there is a unique k ∈ {0, 1, . . . , p − 2} so that

a ≡ gk (mod p).

▶ This integer k is called the index of a with respect to the primitive root
g, and is denoted by k = indg(a).



Properties of the index
▶ If k1, k2 ∈ Z are such that k1 ≤ k2 and

a ≡ gk1 ≡ gk2 (mod p),

then
gk2−k1 ≡ 1 (mod p),

and since g is a primitive root and φ(p) = p − 1, thus

k1 ≡ k2 (mod p − 1).

▶ If a ≡ gk (mod p) and b ≡ gl (mod p), then

ab ≡ gkgl = gk+l (mod p)

and so

indg(ab) ≡ k + l ≡ indg(a) + indg(b) (mod p − 1).

▶ The index map indg is also called the discrete logarithm to the base g
modulo p.



Example
▶ For example, 2 is a primitive root modulo 13. Here is a table of ind2(a)

for a ∈ [12]:
a ind2(a) a ind2(a)
1 0 7 11
2 1 8 3
3 4 9 8
4 2 10 10
5 9 11 7
6 5 12 6

▶ By the structure theorem of subgroups in cyclic groups, if g is a
primitive root modulo p, then gk is a primitive root iff (k, p − 1) = 1.

▶ For example, for p = 13 there are φ(12) = 4 integers k such that
0 ≤ k ≤ 11 and (k, 12) = 1, namely, k = 1, 5, 7, 11, and so the four
pairwise incongruent primitive roots modulo 13 are

21 ≡ 2 (mod 13),

25 ≡ 6 (mod 13),

27 ≡ 11 (mod 13),

211 ≡ 7 (mod 13).



Power residues
▶ Let a, k,m ∈ Z be integers such that m ≥ 2, k ≥ 2, and (a,m) = 1. We

say that a is a k-th power residue modulo m if there exists an x ∈ Z
such that

xk ≡ a (mod m).

▶ If this congruence has no solution, then a is called a k-th power
nonresidue modulo m.

▶ Let k = 2 and (a,m) = 1. If the congruence x2 ≡ a (mod m) is
solvable, then a is called a quadratic residue modulo m. Otherwise, a is
called a quadratic nonresidue modulo m.

▶ For example, the quadratic residues modulo 7 are 1, 2, and 4; the
quadratic nonresidues are 3, 5, and 6. The only quadratic residue
modulo 8 is 1, and the quadratic nonresidues modulo 8 are 3, 5, 4 and 7.

▶ Let k = 3 and (a,m) = 1. If the congruence x3 ≡ a (mod m) is
solvable, then a is called a cubic residue modulo m. Otherwise, a is
called a cubic nonresidue modulo m.

▶ For example, the cubic residues modulo 7 are 1 and 6; the cubic
nonresidues are 2, 3, 4, and 5. The cubic residues modulo 5 are 1, 2, 3,
and 4; there are no cubic nonresidues modulo 5.



Power residues modulo primes

Theorem
Let p ∈ P be a prime number, k ≥ 2, and d = (k, p − 1). Let a ∈ Z be not
divisible by p. Let g be a primitive root modulo p.
▶ Then a is a k-th power residue modulo p if and only if

indg(a) ≡ 0 (mod d),

if and only if
a(p−1)/d ≡ 1 (mod p).

▶ If a is a k-th power residue modulo p, then the congruence

xk ≡ a (mod p) (*)

has exactly d solutions that are pairwise incongruent modulo p.
▶ Moreover, there are exactly (p − 1)/d pairwise incongruent k-th power

residues modulo p.



Proof
▶ Let l = indg(a), where g is a primitive root modulo p. Congruence (*)

is solvable if and only if there exists y ∈ Z such that

gy ≡ x (mod p) and gky ≡ xk ≡ a ≡ gl (mod p).

▶ This is equivalent to ky ≡ l (mod p − 1), since ordp(g) = p − 1.
▶ This linear congruence in y has a solution if and only if

indg(a) = l ≡ 0 (mod d), where d = (k, p − 1).

▶ Thus, the k-th power residues modulo p are precisely the integers in the
(p − 1)/d congruence classes gid + pZ for i ∈ {0, 1, . . . , (p − 1)/d − 1}.

▶ Moreover,
a(p−1)/d ≡ g(p−1)l/d ≡ 1 (mod p)

if and only if

(p − 1)l
d

≡ 0 (mod p − 1) ⇐⇒ indg(a) = l ≡ 0 (mod d)

▶ Finally, if the linear congruence ky ≡ l (mod p − 1) is solvable, then it
has exactly d solutions y that are pairwise incongruent modulo p − 1,
and so (*) has exactly d solutions x = gy that are pairwise incongruent
modulo p. This completes the proof.



Examples
▶ For example, let p = 19 and k = 3. Then d = (k, p − 1) = (3, 18) = 3.
▶ We can check that 2 is a primitive root modulo 19, and so a is a cubic

residue modulo 19 if and only if 3 divides ind2(a).
▶ Since −1 ≡ 29 (mod 3) and ind2(−1) = 9, it follows that −1 is a

cubic residue modulo 19.
▶ The solutions of the congruence x3 ≡ −1 (mod 19) are of the form

x ≡ 2y (mod 19), where 0 ≤ y ≤ 17 and 3y ≡ 9 (mod 18). Then
y ≡ 3 (mod 6), and so y = 3, 9, and 15. These give the following three
cube roots of −1 modulo 19:

8 ≡ 23 (mod 19),

18 ≡ 29 (mod 19),

12 ≡ 215 (mod 19).

Corollary
Let p ∈ P be an odd prime number, and let k ≥ 2 be an integer such that
(k, p − 1) = 1. If (a, p) = 1, then a is a k-th power residue modulo p, and
the congruence xk ≡ a (mod p) has a unique solution modulo p.



Quadratic residues
▶ Let p ∈ P be an odd prime and a ∈ Z not divisible by p. Then a is

called a quadratic residue modulo p if there exists x ∈ Z such that

x2 ≡ a (mod p). (*)

▶ If this congruence has no solution, then a is called a quadratic
nonresidue modulo p. Thus, an integer a is a quadratic residue modulo
p if and only if (a, p) = 1 and a has a square root modulo p. By the
previous theorem, exactly half the congruence classes relatively prime
to p have square roots modulo p.

▶ We define the Legendre symbol for the odd prime p as follows: For any
integer a we set

(a | p) =


1 if (a, p) = 1 and a is a quadratic residue modulo p,

−1 if (a, p) = 1 and a is a quadratic nonresidue modulo p,

0 if p divides a.

▶ The solvability of congruence (*) depends only on the congruence class
of a (mod p), that is,

(a | p) = (b | p) if a ≡ b (mod p),

and so the Legendre symbol is a well-defined function on the
congruence classes Z/pZ.



Legendre symbol: simple calculations
▶ We observe that if p ∈ P is an odd prime, then, the only solutions of the

congruence x2 ≡ 1 (mod p) are x ≡ ±1 (mod p).
▶ If ε, ε′ ∈ {−1, 0, 1} and ε ≡ ε′ (mod p), then p | (ε− ε′), and so
ε = ε′. In particular, if (a | p) ≡ ε (mod p), then (a | p) = ε.

Theorem
Let p ∈ P be an odd prime. For every integer a ∈ Z, we have

(a | p) ≡ a(p−1)/2 (mod p).

Proof.
▶ If p | a, then both sides of the congruence are 0.
▶ If p does not divide a, then, by Fermat’s theorem, we have(

a(p−1)/2
)2 ≡ ap−1 ≡ 1 (mod p) and so a(p−1)/2 ≡ ±1 (mod p).

▶ Applying the previous theorem with k = 2, we have

a(p−1)/2 ≡ 1 (mod p) if and only if (a | p) = 1,

and consequently we must have

a(p−1)/2 ≡ −1 (mod p) if and only if (a | p) = −1.

This completes the proof.



Legendre symbol is completely multiplicative

Theorem
Let p ∈ P be an odd prime, and let a, b ∈ Z. Then (ab | p) = (a | p)(b | p).

Proof.
▶ If p divides a or b, then p divides ab, and

(ab | p) = 0 = (a | p)(b | p).

▶ If p does not divide ab, then, by the previous theorem, we obtian

(ab | p) ≡ (ab)(p−1)/2 (mod p)

≡ a(p−1)/2b(p−1)/2 (mod p)

(a | p)(b | p) (mod p).

▶ The result follows immediately from the observation that each side of
this congruence is ±1. See the remark before the previous theorem.

This completes the proof of the theorem.



Legendre symbol: specific calculations for (−1 | p)

▶ Previous theorem implies that the Legendre symbol (· | p) is
completely determined by its values at −1, 2, and odd primes q.

▶ If a is an integer not divisible by p, then we can write

a = ±2r0 qr1
1 qr2

2 · · · qrk
k ,

where q1, . . . , qk are distinct odd primes not equal to p. Then

(a | p) = (±1 | p)(2 | p)r0(q1 | p)r1 · · · (qk | p)rk .

Theorem
Let p ∈ P be an odd prime number. Then

(−1 | p) =
{

1 if p ≡ 1 (mod 4),
−1 if p ≡ 3 (mod 4).

Equivalently,
(−1 | p) = (−1)(p−1)/2.



Legendre symbol: specific calculations for (2 | p)
Proof.
▶ We observe that

(−1)(p−1)/2 =

{
1 if p ≡ 1 (mod 4),

−1 if p ≡ 3 (mod 4).

▶ By the previous theorem with a = −1, we obtain

(−1 | p) ≡ (−1)(p−1)/2 (mod p).

This completes the proof, since both sides of this congruence are ±1.

Theorem
Let p ∈ P be an odd prime. Then

(2 | p) =

{
1 if p ≡ ±1 (mod 8),
−1 if p ≡ ±3 (mod 8).

Equivalently,
(2 | p) = (−1)(p2−1)/8.



Proof
▶ Consider the following congruences:

p − 1 ≡ 1(−1)1 (mod p),

2 ≡ 2(−1)2 (mod p),

p − 3 ≡ 3(−1)3 (mod p),

4 ≡ 4(−1)4 (mod p),

...

r ≡ p − 1
2

(−1)
p−1

2 (mod p),

where r = p − p−1
2 or r = p−1

2 .
▶ Multiply both sides by each integer on the left, which is even. Then

2 · 4 · 6 · · · (p − 1) ≡
(

p − 1
2

)
!(−1)1+2+...+

(p−1)
2 (mod p),

or equivalently 2
p−1

2
( p−1

2

)
! ≡

( p−1
2

)
!(−1)

(p2−1)
8 (mod p).

▶ Since
( p−1

2

)
! ̸≡ 0 (mod p) we obtain 2

p−1
2 ≡ (−1)

(p2−1)
8 (mod p)

▶ By Euler’s criterion, (2 | p) = 2
p−1

2 ≡ (−1)
(p2−1)

8 (mod p) as desired.



Gaussian sets modulo p
▶ Let p ∈ P be an odd prime, and let S be a set of (p − 1)/2 integers. We

call S a Gaussian set modulo p if S ∪ −S = S ∪ {−s : s ∈ S} is a
reduced system of residues modulo p.

▶ Equivalently, S is a Gaussian set if for every integer a not divisible by p,
there exist unique s ∈ S and ε ∈ {1,−1} such that a ≡ εs (mod p).

▶ For example, the sets {1, 2, . . . , (p − 1)/2} and {2, 4, 6, . . . , p − 1} are
Gaussian sets modulo p for every odd prime p ∈ P.

▶ If S is a Gaussian set, s, s′ ∈ S, and s ≡ ±s′ (mod p), then s = s′.

Lemma (Gauss lemma)
Let p ∈ P be an odd prime, and let a ∈ Z be not divisible by p. Let S be a
Gaussian set modulo p. For every s ∈ S there exist unique integers ua(s) ∈ S
and εa(s) ∈ {1,−1} such that

as ≡ εa(s)ua(s) (mod p).

Moreover,
(a | p) =

∏
s∈S

εa(s) = (−1)m,

where m is the number of s ∈ S such that εa(s) = −1.



Proof
▶ Since S is a Gaussian set, for every s ∈ S there exist unique integers ua(s) ∈ S

and εa(s) ∈ {1,−1} such that as ≡ εa(s)ua(s) (mod p).
▶ We show that s 7→ ua(s) is one-to-one. Indeed, if ua(s) = ua (s′) for some

s, s′ ∈ S, then

as′ ≡ εa
(
s′
)

ua
(
s′
)
≡ εa

(
s′
)

ua(s) (mod p)

≡ εa
(
s′
)
εa(s)εa(s)ua(s) (mod p) ≡ ±as (mod p).

▶ Dividing by a, we obtain s′ ≡ ±s (mod p) and so s′ = s. It follows that the
map ua : S → S is a permutation of S, and so

∏
s∈S s =

∏
s∈S ua(s).

▶ Therefore,

a(p−1)/2
∏
s∈S

s ≡
∏
s∈S

as (mod p) ≡
∏
s∈S

εa(s)ua(s) (mod p)

≡
∏
s∈S

εa(s)
∏
s∈S

ua(s) (mod p)

≡
∏
s∈S

εa(s)
∏
s∈S

s (mod p)

▶ Dividing by
∏

s∈S s, the proof follows, as we obtain

(a | p) ≡ a(p−1)/2 ≡
∏
s∈S

εa(s) (mod p).



Example
▶ We shall use Gauss’s lemma to compute the Legendre symbol (3 | 11).
▶ Let S be the Gaussian set {2, 4, 6, 8, 10}. We have

3 · 2 ≡ 6 (mod 11),
3 · 4 ≡ (−1)10 (mod 11),
3 · 6 ≡ (−1)4 (mod 11),
3 · 8 ≡ 2 (mod 11),

3 · 10 ≡ 8 (mod 11).

▶ The number of s ∈ S with ε3(s) = −1 is m = 2, and so

(3 | 11) = (−1)2 = 1,

that is, 3 is a quadratic residue modulo 11.
▶ There are exactly two incongruent solutions of x2 ≡ 3 (mod 11),

namely
52 ≡ 62 ≡ 3 (mod 11).

and so 5 and 6 are the square roots of 3 modulo 11.



Basic definitions
▶ Let G be a finite abelian group, written additively, and let

A1, . . . ,Ak ⊆ G. The sum of these sets is the set

A1 + · · ·+ Ak = {a1 + · · ·+ ak : ai ∈ Ai for i ∈ [k]} .

▶ If G1, . . . ,Gk are subgroups of G, then the sumset G1 + · · ·+Gk is a
subgroup of G.

▶ We say that G is the direct sum of the subgroups G1, . . . ,Gk, written
G = G1 ⊕ · · · ⊕Gk, if every element g ∈ G can be written uniquely in
the form g = g1 + · · ·+ gk, where gi ∈ Gi for i ∈ [k].

▶ If G = G1 ⊕ · · · ⊕Gk, then |G| = |G1| · · · |Gk|.
▶ The order of an element g in an additive group is the smallest positive

integer d ∈ Z+ such that dg = 0. We know that d divides |G|.
▶ Let p ∈ P be a prime number. A p-group is a group each of whose

elements has an order that is a power of p.
▶ For every prime number p ∈ P, let

G(p) := {g ∈ G : ordG(g) = pl for some l ∈ Z+}.

Then G(p) is a subgroup of the abelian group G.



The structure of finite Abelian groups
Theorem (Structure theorem for finite Abelian groups)
Every finite abelian group is a direct sum of cyclic groups.
This result will be a consequence of the next two theorems.

Theorem
Let G be a finite abelian group, written additively, and let |G| = m. For
every prime number p ∈ P, let G(p) be the set of all elements g ∈ G whose
order is a power of p. Then

G =
⊕
p|m

G(p).
Proof.
▶ Let m =

∏
i∈[k] pri

i , and define mi = mp−ri
i for i ∈ [k].

▶ Then (m1, . . . ,mk) = 1, and by the GCD theorem there exist
u1, . . . , uk ∈ Z such that m1u1 + · · ·+ mkuk = 1.

▶ Let g ∈ G, and define gi = miuig ∈ G for i ∈ [k]. Since
pri

i gi = muig = 0, it follows that gi ∈ G(pi). Moreover,

g = (m1u1 + · · ·+ mkuk) g = m1u1g + · · ·+ mkukg

= g1 + · · ·+ gk ∈ G (p1) + · · ·+G (pk) .



Proof
▶ Thus we have proved that G = G (p1) + · · ·+G (pk) .

▶ Suppose that
g1 + · · ·+ gk = 0,

where gi ∈ G (pi) for i ∈ [k].
▶ There exist r1, . . . , rk ∈ N such that gi has order pri

i for i ∈ [k]. Let

dj =
∏
i∈[k]
i ̸=j

pri
i .

▶ Since djgi = 0 for i ∈ [k] with i ̸= j, it follows that

0 = dj (g1 + · · ·+ gk) = djgj.

▶ We proved that djgj = 0 for all j ∈ [k], thus prj
j | dj, but (prj

j , dj) = 1,
which is only possible when r1 = . . . = rk = 0

▶ Hence, gj = 0 for all j ∈ [k].
▶ Thus, 0 has no nontrivial representation in G = G (p1) + · · ·+G (pk).
▶ We conclude that G is the direct sum of the subgroups G (pi).



Useful lemma
Lemma
Let G be a finite abelian p-group. Let g1 ∈ G be an element of maximum
order pr1 , and let G1 = ⟨g1⟩ be the cyclic subgroup generated by g1. Let
h ∈ G and suppose that h +G1 ∈ G/G1 has order pr, then there exists an
element g ∈ G such that g +G1 = h +G1 and g has order pr in G.
Proof.
▶ If h +G1 has order pr in G/G1, then the order of h in G is at most pr1

(since pr1 is the maximum order in G) and at least pr.
▶ Since G1 = pr (h +G1) = prh +G1, it follows that prh ∈ G1, and so

prh = ug1 for some positive integer u ≤ pr1 (since g1 has order pr1 ).
▶ Write u = psv, where (p, v) = 1 and 0 ≤ s ≤ r1. Then vg1 also has

order pr1 , and so psvg1 has order pr1−s in G. Then prh = psvg1 has order
pr1−s in G, and so h has order pr1+r−s ≤ pr1 . It follows that r ≤ s, and

prh = psvg1 = pr (ps−rvg1
)
= prg′

1,

where g′
1 = ps−rvg1 ∈ G1. Taking g = h− g′

1, we see g+G1 = h+G1.
▶ Moreover, prg = prh − prg′1 = 0, and so the order of g is at most pr. On

the other hand, g +G1 has order pr in the quotient group G/G1, and so
the order of g is at least pr. Therefore, g has order pr as desired.



Structure of finite abelian p-groups
Theorem
Every finite abelian p-group is a direct sum of cyclic groups.

Proof.
▶ The proof is by induction on the cardinality of G. Let G be a finite

abelian p-group. If G is cyclic, we are done. If G is not cyclic, let
g1 ∈ G be an element of maximum order pr1 , and let G1 := ⟨g1⟩.

▶ The quotient group G/G1 is a finite abelian p-group, and

1 < |G/G1| =
|G|
pr1

< |G|

▶ Therefore, the induction hypothesis holds for G/G1, and so

G/G1 = H2 ⊕ · · · ⊕Hk

where Hi is a cyclic subgroup of G/G1 of order pri for i ∈ [k] \ {1}.
▶ Moreover,

|G|
pr1

= |G/G1| =
k∏

i=2

pri



Proof
▶ By the previous lemma, for each i ∈ [k] \ {1} there exists gi ∈ G such

that gi +G1 generates Hi and ordG(gi) = pri . Let Gi := ⟨gi⟩.
▶ Then |Gi| = pri for i ∈ [k]. We shall prove that G = G1 ⊕ · · · ⊕Gk.
▶ We begin by showing that G = G1 + · · ·+Gk. If g ∈ G, then g +G1 ∈

G/G1, and there exist u2, . . . , uk ∈ Z such that 0 ≤ ui ≤ pri − 1 for
each i ∈ [k] \ {1}, and

g+G1 = u2 (g2 +G1)⊕· · ·⊕uk (gk +G1) = (u2g2 + · · ·+ ukgk)+G1.

▶ It follows that we can find u1 ∈ Z such that 0 ≤ u1 ≤ pr1 − 1 and

g − (u2g2 + · · ·+ ukgk) = u1g1 ∈ G1,

and so
g = u1g1 + u2g2 + · · ·+ ukgk ∈ G1 + · · ·+Gk.

▶ Therefore, G = G1 + · · ·+Gk. Since

|G| = |G1 + · · ·+Gk| ≤ |G1| · · · |Gk| =
k∏

i=1

pri = |G|

it follows that every element of G has a unique representation as an
element in the sumset G1 + · · ·+Gk, and so G = G1 ⊕+ · · ·+⊕Gk.

▶ This completes the proof.



Characters of finite Abelian groups
▶ Let G be a finite abelian group, written additively. A group character is

a homomorphism χ : G → C×, where C×is the multiplicative group of
nonzero complex numbers.

▶ Then χ(0) = 1 and χ (g1 + g2) = χ (g1)χ (g2) for all g1, g2 ∈ G.
▶ If χ is a character of a multiplicative group G, then χ(1) = 1 and
χ (g1g2) = χ (g1)χ (g2) for all g1, g2 ∈ G.

▶ We define the character χ0 on G by χ0(g) = 1 for all g ∈ G. If G is an
additive group of order n and if g ∈ G has order d, then

χ(g)d = χ(dg) = χ(0) = 1,

and so χ(g) is a d-th root of unity, and also χ(g) is an n-th root of unity
for every g ∈ G, since d | n. Hence, we have |χ(g)| = 1 for all g ∈ G.

▶ We define the product of two characters χ1 and χ2 by

χ1χ2(g) = χ1(g)χ2(g) for all g ∈ G.

In is not difficult to see that this product is associative and commutative.
▶ The character χ0 is a multiplicative identity, since

χ0χ(g) = χ0(g)χ(g) = χ(g)

for every character χ and g ∈ G.



Characters of finite Abelian groups
▶ The inverse of the character χ is the character χ−1 defined by

χ−1(g) = χ(−g),

and indeed we have χχ−1 = χ0, since

χχ−1(g) = χ(g)χ−1(g) = χ(g)χ(−g)

= χ(g − g) = χ(0) = 1
= χ0(g).

▶ The complex conjugate of a character χ is the character χ̄ defined by

χ(g) = χ(g).

Since |χ(g)| = 1 for all g ∈ G, we have

χχ(g) = χ(g)χ(g) = |χ(g)|2 = 1 = χ0(g),

and so for every character χ and all g ∈ G we have

χ−1(g) = χ(g).

▶ It follows that the set Ĝ of all characters of a finite abelian group G is
an abelian group, called the dual group or character group of G.

▶ We prove that G is isomorphic to Ĝ for every finite abelian group G.



The dual group of a cyclic group
Theorem
The dual of a cyclic group of order n is also a cyclic group of order n.
Proof.
▶ Recall that e(x) = e2πix for any x ∈ R and we will write en(x) = e(x/n).
▶ The nth roots of unity are the complex numbers 1, en(1), . . . , en(n − 1).
▶ Let G = {jg0 : j ∈ N<n} be a cyclic group of order n with generator g0.
▶ For every a ∈ Z, we define ψa ∈ Ĝ by ψa (jg0) := en(aj).
▶ We can easily verify that ψaψb = ψa+b, and ψ−1

a = ψ−a, and ψa = ψb

if and only if a ≡ b (mod n). It follows that ψa = ψa
1 for any a ∈ Z.

▶ If χ ∈ Ĝ, then χ is completely determined by its value on g0. Since
χ (g0) is an n-th root of unity, we have χ (g0) = en(a) for some
a ∈ N<n, and so χ (jg0) = en(aj) for all j ∈ Z. Thus, χ = ψa and

Ĝ = {ψa : a ∈ N<n} = {ψa
1 : a ∈ N<n}

is also a cyclic group of order n, and the map G ∋ a 7→ ψq ∈ Ĝ defines
the isomorphism between G and Ĝ.

▶ It is a simple but critical observation that if g is a nonzero element of a
cyclic group G, then ψ1(g) ̸= 1.



The dual group of a finite abelian group
Theorem
Let G be a finite abelian group and let G1, . . . ,Gk be subgroups of G such
that G = G1 ⊕ · · · ⊕Gk. For every character χ ∈ Ĝ there exist unique
characters χi ∈ Ĝi such that if g ∈ G and g = g1 + · · ·+ gk with gi ∈ Gi for
i ∈ [k], then

χ(g) = χ1 (g1) · · ·χk (gk) . (*)

Moreover, Ĝ and Ĝ1 × · · · × Ĝk are isomorphic.

Proof.
▶ If χi ∈ Ĝi for i ∈ [k], then we can construct a map χ : G → C× as

follows. For each g ∈ G there exist unique elements gi ∈ Gi such that
g = g1 + · · ·+ gk. Define

χ(g) = χ (g1 + · · ·+ gk) = χ1 (g1) · · ·χk (gk) . (**)

▶ Then χ is a character in Ĝ, and this construction induces a map

Ψ : Ĝ1 × · · · × Ĝk → Ĝ,

defined by Ψ(χ1, . . . , χk) := χ, where χ is given as in (**).



The dual group of a finite abelian group

▶ If is easy to see that Ψ is a one-to-one homomorphism. Indeed, if
(χ1, . . . , χk) ̸= (χ′

1, . . . , χ
′
k), then without loss of generality we can

assume that χ1 ̸= χ′
1. This means that there exists g1 ∈ G1 such that

χ1(g1) ̸= χ′
1(g1). It suffices to take g = g1 + 0 + . . .+ 0 to see that

Ψ(χ1, . . . , χk)(g) = χ1(g1) ̸= χ′
1(g1) = Ψ(χ′

1, . . . , χ
′
k)(g).

▶ We shall show that the mapΨ is onto. Let χ ∈ Ĝ. We define the
function χi on Gi by

χi (gi) = χ (gi) for all gi ∈ Gi.

▶ Then χi is a character in Ĝi. If g ∈ G and g = g1 + · · ·+ gk with
gi ∈ Gi, then

χ(g) = χ (g1 + · · ·+ gk) = χ (g1) · · ·χ (gk) = χ1 (g1) · · ·χk (gk) .

▶ It follows that
Ψ(χ1, . . . , χk) = χ

and so Ψ is onto.



Duality theorem for finite Abelian groups
Theorem (Separation points property)
Let G be a finite abelian group. If 0 ̸= g ∈ G, then there is χ ∈ Ĝ so that χ(g) ̸= 1.

Proof.
▶ We write G = G1 ⊕ · · · ⊕Gk as a direct product of cyclic groups.

▶ If g ̸= 0, then there exist g1 ∈ G1, . . . , gk ∈ Gk such that g = g1 + · · ·+ gk,
and gj ̸= 0 for some j ∈ [k].

▶ Since the group Gj is cyclic, there is χj ∈ Ĝj such that χj (gj) ̸= 1. For
i ∈ [k] \ {j}, let χi ∈ Ĝi be the character defined by χi (g1) = 1 for all gi ∈ Gi.
If χ = Ψ(χ1, . . . , χk) ∈ Ĝ, then χ(g) = χj (gj) ̸= 1.

This completes the proof of the theorem.

Theorem (Duality theorem)
A finite abelian group G is isomorphic to its dual, that is, G ≡ Ĝ.

Proof.
▶ We know the dual of a finite cyclic group of order n is also a finite cyclic group

of order n. We also know that a finite abelian group G has cyclic subgroups
G1, . . . ,Gk such that G = G1 ⊕ · · · ⊕Gk. Finally we see that

Ĝ ≡ Ĝ1 × · · · × Ĝk ≡ G1 × · · · ×Gk ≡ G1 ⊕ · · · ⊕Gk = G.

This completes the proof.



Pairing
▶ Let G be a finite abelian group of order n, and Γn be the group of nth

roots of unity. There is a pairing map ⟨·, ·⟩ : G× Ĝ → Γn defined by

⟨a, χ⟩ = χ(a).

▶ This map is nondegenerate in the sense that:
▶ ⟨a, χ⟩ = 1 for all group elements a ∈ G if and only if χ = χ0;
▶ ⟨a, χ⟩ = 1 for all characters χ ∈ Ĝ if and only if a = 0 by the separation

points property.

▶ For each a ∈ G, the function ⟨a, ·⟩ is a character of the dual group Ĝ,

that is, ⟨a, ·⟩ ∈ ̂̂G. The map ∆ : G → ̂̂G defined by a 7→ ⟨a, ·⟩ or,
equivalently,

∆(a)(χ) = ⟨a, χ⟩ = χ(a),

is a homomorphism of the group G into its double dual ̂̂G.
▶ Since the pairing is nondegenerate, this homomorphism is one-to-one.

▶ Since |G| = |Ĝ| = | ̂̂G|, it follows that ∆ is a natural isomorphism of G
onto ̂̂G.



Orthogonality relations
Theorem
Let G be a finite abelian group of order n, and let Ĝ be its dual group.
▶ If χ ∈ Ĝ, then ∑

a∈G
χ(a) =

{
n if χ = χ0,

0 if χ ̸= χ0.

▶ If a ∈ G, then ∑
χ∈Ĝ

χ(a) =

{
n if a = 0,
0 if a ̸= 0.

Proof.
▶ For χ ∈ Ĝ, let

S(χ) =
∑
a∈G

χ(a).

If χ = χ0, then S (χ0) = |G| = n. If χ ̸= χ0, then χ(b) ̸= 1 for some b ∈ G,
and so S(χ) = 0, since

χ(b)S(χ) = χ(b)
∑
a∈G

χ(a) =
∑
a∈G

χ(ba) =
∑
a∈G

χ(a) = S(χ).



Proof

▶ For a ∈ G, let
T(a) =

∑
χ∈Ĝ

χ(a)

▶ If a = 0, then T(a) = |Ĝ| = n. If a ̸= 0, then χ′(a) ̸= 1 for some
χ′ ∈ Ĝ (by the separation point property), hence

χ′(a)T(a) = χ′(a)
∑
χ∈Ĝ

χ(a)

=
∑
χ∈Ĝ

χ′χ(a)

=
∑
χ∈Ĝ

χ(a)

= T(a)

and so T(a) = 0. This completes the proof.



Orthogonality relations
Theorem
Let G be a finite abelian group of order n, and let Ĝ be its dual group.
▶ If χ1, χ2 ∈ Ĝ, then

∑
a∈G

χ1(a)χ2(a) =

{
n if χ1 = χ2,

0 if χ1 ̸= χ2.

▶ If a, b ∈ G, then

∑
χ∈Ĝ

χ(a)χ(b) =

{
n if a = b,
0 if a ̸= b.

Proof.
▶ These identities follow immediately from the previous theorem, since

χ1(a)χ2(a) = χ1χ
−1
2 (a), and χ(a)χ(b) = χ(a − b).

This completes the proof.



Examples
▶ The character table for a group has one column for each element of the

group and one row for each character of the group.
▶ For example, if C4 is the cyclic group of order 4 with generator g0, then

the characters of C4 are the functions

ψa (jg0) = e4(aj) = iaj

for a ∈ {0, 1, 2, 3}, and the character table is the following:

0 g0 2g0 3g0

ψ0 1 1 1 1
ψ1 1 i −1 −i
ψ2 1 −1 1 −1
ψ3 1 −i −1 i

▶ Note the that sum of the numbers in the first row is equal to the order of
the group, and the sum of the numbers in each of the other rows is 0.

▶ Similarly, the sum of the numbers in the first column is the order of the
group, and the sum of the numbers in each of the other columns is 0.
This is a special case of the orthogonality relations.


