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Dirichlet characters

Definition
Let g € Z.. A Dirichlet character modulo ¢ is amap x : Z\{0} — C
satisfying the following rules for all a, b € Z\{0}:

() x(a) = x(a (mod g));
(i) x(ab) = x(a)x(b);
(iii) x(a) =0if (a,q) > 1.

Remarks

» In fact, (i) and (ii) mean that Dirichlet character modulo g are
homomorphisms of the multiplicative group (Z/¢Z)* and property (iii)
extends these maps to Z\{0}.

» On the other hand, we can readily see that corresponding to every

multiplicative character ¢ € (Z/qZ)* thereis x : Z\{0} — C, a
Dirichlet character modulo ¢, defined by

_J¥la+4qZ) if(a,q) =1,
x(a) = {0 if (a,q) > 1.

From this definition we immediately see that y satisfies (i)-(iii).



Remarks

» By the previous remark we see that the set of Dirichlet characters
modulo g is a group isomorphic to the multiplicative group (Z/qZ)* of
the units of the ring Z/qZ.

» In particular, there are (g) Dirichlet characters modulo g.

» The identity element of this group is called the principal, or trivial,
character modulo ¢ and is usually denoted by x¢. Thus, X is defined

forall a € Z by
1, if(a,q) =1,
Xo(a):{ (a,q)

0, otherwise .

» Let x be a Dirichlet character modulo g. We define X by X(a) = x(a).
Clearly,  is also a Dirichlet character modulo ¢ called the conjugate
character of .

> It is also not difficult to see that, if (a,g) = 1, then x(a) is a ¢(q) th
root of unity. Indeed, if a € (Z/qZ)*, we have

(c(@)?@ = x (a7@) = x(1) = 1.



Orthogonality relations

Notation
Let m € Z,. We will use the following convenient notation:

> > . (mod m) will always denote the sum over a complete set of residue
classes modulo m.

> >\ (mod m) Will always denote the sum over the ¢(m) Dirichlet
characters modulo m.

Applying the first orthogonality relation from Lecture 6 for G = (Z/mZ)*
we obtain the following orthogonality relation for Dirichlet characters:

Theorem (Orthogonality relation I)

» [f x is a Dirichlet character modulo m, then

4) — @(m) if x = Xo,
2, x@ {0 if X # Xo-

» [fa € Z, then

- (m) ifa=1 (modm),
Z x(@) { 2)0 ifaz1l (modm).

x( mod m)



Orthogonality relations

Applying the second orthogonality relation from Lecture 6 for
G = (Z/mZ)* we obtain the following orthogonality relation for Dirichlet
characters:

Theorem (Orthogonality relation II)

» [If x1 and X, are Dirichlet characters modulo m, then

Y. x@xal) =

a( mod m)

o(m) ifxi = x2,
0 ifx1 # X

» Ifa,b € Z, then

0 otherwise .

Z (@) = {(p(m) if (a,m) = (bym)=1landa=>b (mod m),

x( mod m)



Examples of Dirichlet characters
» For k = 2, the principal character is the only one.
» For k = 3, there are two characters, namely

1 if n = 1 mod 3,

(n) 1 ifrn=1,2mod3, (n) L | 43

n) = n) = — = — .

X0 0 ifn=0 mod3, X l ! ot
0 if n = 0 mod 3.

» For k = 4, there are again two characters, namely

o 1 ifn =1 mod 4
1 ifnisodd, .
Xo(n) = xi1(n) =< —1 ifn=—1mod4,

0 ifniseven, o
0 if nis even .

» For k = 5, there are four characters given in the following table:

[n (mod5)[[1] 2 ]3] 4]0]
Xo(n) 1] 1 1 110
x1(n) L i |—=i|—-1]0
x2(n) I|-1|—-1[11]0
x3(n) 1| —i| i |[—-1]0




Conductors, induced, primitive and imprimitive characters
Let x, x1 be Dirichlet characters modulo ¢ and ¢g; respectively. Let g; be a
divisor of g. We say that x is induced by x; or x; induces x if

x(n) =xo(n)x1(n) forall neZ, ()

where o is the principal character modulo g.

» A Dirichlet character x modulo g is said to be imprimitive if there
exists a Dirichlet character y; modulo ¢g; that induces x for some
proper divisor g; of g.

» The conductor of a Dirichlet character x modulo ¢ is the smallest
divisor g; of g for which (*) holds.

» A Dirichlet character x modulo g is said to be primitive if the conductor
of y is simply equal to its modulus g. In other words, Y is primitive, if
it is trivially induced by itself and x = xoX.

Remarks
» The principal character Y is imprimitive for every integer g > 1.

> Let g* be the conductor of a Dirichlet character y modulo g. Then
X = Xox", where x* is a Dirichlet character modulo ¢g*, which is
primitive and uniquely determined by . This follows from the fact that
g™ is the smallest divisor of g for which (*) holds.



Useful result

Lemma
Letm,d € Z be such thatd | m. If gcd(a,d) = 1 for some a € 7Z, then
there exists b € Z such that b = a (mod d) and ged(b,m) = 1.

Proof.
> Letm = [[;cyypi and d = [[;cyy pi', where r; > 1and 0 < 5; < r; for
i € [k]. Let n be the product of the prime powers that divide m but not

d. Then n = [[icyy pi’ and ged (n,d) = 1.
5;=0

> By the existence of solutions for linear congruences there is x € Z such
thatdx =1 — a (mod n). Thenb =a+ dx =1 (mod n) and
ged (byn) = 1.
> Also,
b=a (modd).

» If gcd (b,m) # 1, there exists a prime p € P that divides both b and m.
However, p does not divide n since ged (b, n) = 1. It follows that p | d,
and so p divides b — dx = a, which is impossible since (a,d) = 1.

Therefore, gcd (b, m) = 1 and we are done. O



Quasiperiod of characters

Definition

Let x be a Dirichlet character modulo g. We say d is a quasiperiod of y if
x(m) = x(n) whenever m = n (mod d) and (mn, g) = 1. Obviously, every
period is a quasiperiod.

Proposition

Let x be a Dirichlet character modulo q. Then, x is imprimitive if and only if there is
a proper divisor d of q which is a quasiperiod of x. In particular, the conductor of x
is its quasiperiod.

Proof.

» Suppose that x is imprimitive, then it is induced by a Dirichlet character
modulo d, that is x = xox1. Take m = n (mod d) with (mn,q) = 1, then
(m,q) = (n,q) = 1and

x(m) = xo(m)x1(m) = x1(m) = x1(n) = xo(n)x1(n) = x(n),

since X1 has period d.

» For the converse implication, we shall construct a Dirichlet character x*
modulo d such that x = xox*.

» For this purpose we will use the following observation if d | g and (n,d) = 1,
then there is k € Z such that (n + dk, q) = 1.



Proof

Then it suffices to set

v ) x(n+dk) if(nd) =1,
X (n) = {o if (n,d) > 1,

where k € Z is such that (n + dk, q) = 1.

We note that although there are many possible choices of k € Z, the
value of x*(n) depends only on n (mod d). Indeed, if n = m (mod d)
and (n,d) = (m,d) = 1 then there are integers k,, k,, € Z such that

(n + dky,q) = (m + dky,q) = 1, which immediately implies

X*(l’l) = X(n +dknaQ) = X(m +dkm,4) = X*(m),

since d is the quasiperiod of x and n + dk, = m + dk,, (mod d).

It remains to prove that x* is a homomorphism. Let m, n € Z be such
that (mn,d) = 1, then (m,d) = (n,d) = 1 and there are k,,, ky,, kpn € Z
such that (m + dky,, q) = (n + dk,, q) = (mn + dkyy, q) = 1. Thus we
have (m + dky,)(n + dk,) = mn + dk,,,, (mod d) and since x is
homomorpfism and d is the quasiperiod of x, we consequently have

X" (mn) = x(mn + dkyn) = x((m + dky,) (n + dky,))
= X(m + dkn)x(n + dky,) = x*(m)x*(n). O



Quasiperiodic characters

Proposition

Let x be a Dirichlet character modulo q and let d | g and d < q. Then, X has
quasiperiod d if and only if x(n) = 1 foralln =1 (mod d) with (n,q) = 1.
Proof.

» Observe that if x has quasiperiod d, then x(m) = x(n) whenever m = n
(mod d) and (mn, g) = 1, which implies the condition above by taking
m = 1, since x(1) = 1. For the converse, assume that the above
condition holds. Take m = n (mod d) with (m, q) = (n,q) = 1.

» Since (m,q) = 1 then we can find m’ € Z such that mm’ =1 (mod q).

v

Thus x(mm') = x(1) = 1, since x has period q.

» We also obtain that mm’ = 1 (mod d), since d | ¢, and consequently
nm' =mm' =1 (mod d).
» Since (mm',q) = (nm’,q) = 1, we obtain by the above condition that
x(m)x(m') = x(mm') =1 = x(nm') = x(n)x(m'),

which yields x(n) = x(m) as desired. O



Characterizations of primitivity

Theorem

Let x be a Dirichlet character modulo q. Then, x is primitive if and only if
for every proper divisor d of q there exists m € Z satisfyingm = 1 (mod d)
and (m, q) = 1 such that x(m) # 1.

Proof.
The proof readily follows by applying the previous two propositions. [

Theorem
Let x be a Dirichlet character modulo q. Then, the following are equivalent:

(1) x is primitive;
(i) ifd | g and d < gq, then for any a € Z, we have
q
x(n) = 0.
od d

n=a mo



Proof

» Assume that condition (i) is true. If  is primitive, then there is m € Z
satisfying m = 1 (mod d) and (m,q) = 1 such that x(m) # 1. Then

§= xm= > xln
od d

n=a mo

|
=
=
3
+
g

> Since x(m) # 1, we deduce that S = 0, and we are done.
» Assume that condition (ii) is true. Let d | g and d < ¢, and @ = 1. Then

q
> x(n) =0,
'mod d

n—=

and since x (1) = 1, there must be 2 < m < g such that 0 # x(m) # 1.

» Butm =1 (mod d) and (m,q) = 1, hence by the previous theorem x
must be primitive as desired. OJ



Primitive characters further characterizations

Lemma

Suppose that (q1,q2) = 1 and let x; be a Dirichlet character (mod g;) for
i € [2]. Then x = x1X2 is primitive (mod q1q,) if and only if x| and x>
are both primitive.

Proof.

> We first prove the implication (=>). Let d; be the conductor of y;. If
(mn,qi1q2) = 1andm = n mod did», then x;(m) = xi(n), hence did is a
quasiperiod of x. Thus did> = q1¢q> since X is primitive. Therefore, di = ¢
and d» = ¢ since d; | g fori € [2].

> We now prove the reverse implication (<=). Let d be the conductor of x. Set
di = (d, gq:) for i € [2]. We show that d; is a quasiperiod of x;. Suppose
(mn,q1) = 1and m = n (mod d,). Choose mo, ny € Z so that
my=m (modgqi), and no=n (mod q),

mpy=1 (modgq), and np=1 (mod q).

Thus my = ny (mod dy) and mp = ny (mod d>), hence my = no (mod did>),
but did> = (d, q1g2) = d since d | q1g». Consequently, mo = no (mod d) and
(mono, qi1g2) = 1, yielding x (mo) = x(no). Therefore, d, is a quasiperiod of
X1, since x1(m) = x(mo) = x(no) = x1(n). Since x is primitive, we must
have di = ¢i. Similarly, d» = ¢», and finally d = q1¢>. |



Explicit formulas for the Dirichlet characters

» By the Chinise reminder theorem, or more abstractly, by the structure
theorem for finite abelian groups if ¢ = HpelP’ p®(@ then

(z/qz)* = (R) (Z/p*9Z)*.

por@|q

In other words, any multiplicative group modulo ¢ is isomorphic to the
direct product of multiplicative groups modulo prime powers.

» Therefore, understanding Dirichlet characters on (Z/gZ)*, is reduced
to understand Dirichlet characters on (Z/p® (7).

> Letp € [P be an odd prime number. Then the corresponding group
(Z/p™Z)* is cyclic. This means that there exists a primitive root g in
(Z/p™Z)*. In fact, we can find a primitive root in (Z/pZ)*, which is
also a primitive root in (Z/p®Z)* forall B € Z .

> If (n,p) = 1let v(n) = indyn (mod p®), so that v(n) is the unique
integer satisfying the conditions

n=g"" (modp®), where 0<uv(n)<ge@P®).



Explicit formulas for the Dirichlet characters

» For h € N, (pa), define x;, by the relations

) = (™) = {e(hu(n)/sa(p ) itptn,
0 ifp|n.

» Using the properties of indices v(n) = indgn (mod p®) it is easy to
verify that y;, is completely multiplicative and periodic with period p®,
so Xy, is a Dirichlet character modp®, with x( being the principal
character. This verification is left as an exercise!

» Since
xn(g) = e(h/o(p))
the characters o, X1, - - - , Xy (po)—1 are distinct because they take

distinct values at g. Therefore, since there are ¢ (p®) such functions
they represent all the Dirichlet characters (mod p®).

» The same construction works for the modulus 2% if « = 1 or o« = 2,
using g = 3 as the primitive root.



Explicit formulas for the Dirichlet characters

>

>

If & > 3 the modulus 2 has no primitive root and a slightly different
construction is needed to obtain the characters mod 2.

‘We know that for every a > 3, and every odd integer n € Z there is a uniquely
determined integer v(n) such that
n=(=1)""D25""  (mod 2%),  with 1< w(n) < (2%)/2.

With this knowledge we can construct all the characters (mod 2¢) if a > 3.

Let
. (—=1)*=D/2 ifnis odd ,
n) =
0 if nis even ,

and let

e(v(n)/2°7%) ifnisodd,

0 if niseven,
where v(n) is the integer given in the previous item.

Then it is easy to verify that each of f and g is a character mod 2%. So is each
product

Xay ,ay (n) = Xay,a» (n; Za) :f(n)a]g(n)az — e(

al(n4— 1) + LZZEZ))

where a; € [2] and a> € [¢(2%)/2]. Moreover these ¢(2%) characters are
distinct so they represent all the characters mod 2.



Real Dirichlet characters

» If x is a real-valued Dirichlet character (mod m) and (n,m) = 1, the number
x(n) is both a root of unity and real, so x(n) = 1. From the construction from
the previous slides we can determine all real Dirichlet characters (mod p®).

Theorem (Exercise)
For an odd prime p € P and o € 7., consider the Dirichlet characters

{e(hu(n)/so(pa» ifptn,
0

xi(n) = xa(n;p®) = for h € [Neppel

ifp|n,

Then xy is real if, and only if, h = 0 or h = @(p®) /2. Hence there are exactly two
real characters (mod p®).
» The next theorem describes the real characters mod2“ when o > 3.

Theorem (Exercise)

If o > 3, consider the Dirichlet characters

. a(n—1 av(n
a1 = X (152°) = (AL ),

where a; € [2] and ay € [p(2%)/2]. Then X, q, is real if, and only if, ay = ©(2%)/2
or ay = p(2%)/4. Hence there are exactly four real characters (mod 2)% if a > 3.



Primitive Dirichlet characters

Theorem (Exercise)
For an odd prime p € P and o > 2, consider the Dirichlet characters

xh(n)=xh(n;pa)={g(hy(n)/(p(pa)) Zﬁz Jor h € [Negpel

Then xy, is primitive modp® if, and only if, p { h.

Theorem (Exercise)
If a > 3, consider the Dirichlet characters

a aj(n—1)  ayw(n)
Xay,az (I’l) = Xay,a (I’l; 2 ) - 6‘< 4 + 2a=2 |’

where ay € [2] and a; € [p(2%)/2]. Then Xq, 4, is primitive (mod 2%) if;
and only if, a, is odd.



Remarks

>
>

The character corresponding to & = 0 is the principal character.

When a = 1 the quadratic character x,(n) = (n | p) is the only other
real character (mod p).

For the moduli m = 1,2 and 4, all the Dirichlet characters are real.

There is only one primitive character modulo 4 defined for all odd
positive integers n by

) = (1),

There are two primitive characters modulo 8 defined for all odd positive
integers n by

Xg(l’l) _ (71)(11“71)/8, and X4X8(n) _ (71)(n71)/2+(n“71)/8.

If g = p® is a prime power, the only real primitive characters of
conductor g are x4, X8, X4Xxg and x,. Every real primitive character can
be obtained as the product of these characters.

This implies that the conductor of a real primitive character is of the
form 1, m,4m or 8m where m is a positive odd squarefree integer.



Dirichlet’s theorem
Theorem (Dirichlet)

Let a,q € 7 be coprime integers. Then there are infinitely many prime
numbers p € P such that p = a (mod gq).

» Around 1837, Dirichlet succeeded in using a generalization of Euler’s
proof Zpep 117 = oo and some group-theoretic tools.

» More precisely, Dirichlet proved the divergence of the series
3 !
p=a( mod q) P
by discovering a clever expression for the characteristic function

1, .(1) 1, ifn=a (modgq),
a\l) = .
@ 0, otherwise .

and showing that

Lya(p)
pa

lim
o—1+
peP



The first key identity

Proposition
Let a,q € Z, be coprime integers and define 1, ,(n) as

1 o(n) = I, ifn=a (mod q),
LA 0, otherwise.

Foralln € Z, we have
) = o 32
g.a( o(q =

where the summation is taken over all Dirichlet characters modulo q.

Proof.
» This readily follows from the identity a,n € Z, then

0 otherwise,

Z X(n)y(a) — {@(q) if (I’l, q) = (a7Q) =landn=a (mOd q)7
x( mod q)

which is simply the orthogonality relation. O



The second key identity

Proposition
Let a,q € Z be coprime integers and N > 1 be an integer. Then we have

1 1 1 1 x(p
2 T 2 p e 2 XWX TS

p<N p<N x( mod q) PN
p=a( mod q) (p.a)=1 XF#Xo

Proof.

» By the previous proposition we obtain

v oloy lalp) _ 1 S x xr)
PN p PN p #(9) X ( mod q) PN p
p=a( mod q)

> We split the sum according to x = xo or X # Xo, leading to the claim.
This completes the proof.



Simple bounds for sums of characters

Corollary

Let a,q € Z be coprime integers and N > 1 be an integer. Then for any
arithmetic function f : N — C the following holds

> = X s S T S o)

n<N n<N ® q) x( mod q) n<N
n=a( mod gq) (n,9)=1 XFXo
Proposition

For all non-principal Dirichlet characters x modulo q and all non-negative
integers M < N, we have

n=M+1



Proof

> Let K = g|(N — M — 1)/q]. By the orthognality relation, for all

X # Xo, We have
> xla)=0.
a( mod q)

» Hence, by periodicity, we obtain

M+K K/q M+jq K/qg M+q
2oxm=3 > xm=3 > xm=o.
n=M+1 J=1 n=M+1+(j—1)q j=1 n=M+1
» The interval (M + K, N] contains at most g integers ny, . .., n, with
r € [g]. Denoting by n; the residue class of the integer n; in (Z/qZ)*,
we obtain
N r
dooxm< > xm)l< > 1=

i=1 n<q
(ni,q)=1 (n,q)=1

as asserted.



Sums involving Dirichlet characters

Proposition

Let F € C'((1,+00)) be a decreasing function such that F > 0 and
lim,_, o F(x) = 0. For all non-principal Dirichlet characters x modulo q
and all real numbers x > 1, we have

Zx(k)F(k)’ < 2qF(x).

k>x

Proof.

» If (by)rez C Ry is a monotone, then

n
‘ Z akbk‘ < 2max{by+1,b,} max |sgl,
m<k<n
k=m+1

where s, = Zx<n§k x(n).
» Applying this with @, = x (k) and by = F(k) the result follows.
This completes the proof.



Definition of L-functions

L-functions
Let x be a Dirichlet character modulo g > 2. The L-function, or L-series,
corresponding to Y is the Dirichlet series of x, given by

L(s7x):ZX’£:l) forall s=o+ireC witho > 1.
n=1

> By the absolute convergence of L(s, x) for s € C with o > 1 we have

Lis,) =[] (1 - X@)l.

peP

» If x = xo we also have

> If x # xo then L(s, x) converges for all s € C with o > 0, by the
previous proposition.



Dirichlet’s theorem: the first key step
Theorem
If x # xo is a non-principal Dirichlet character modulo q satisfying

L(1,x) #0,

then the series

Z X (P)
peP p
converges.

Proof.

Let N > 2 be an integer. We will estimate in two different ways the sum

Z x(n)logn
—
1<n<N
» Since logn = A x 1(n), we have

Z X(”)nlogn _ Z @ ZA(d)'

n<N n<N d|n



Proof

» Interchanging the order of summation and using multiplicativity of the
Dirichlet characters we can write

Z X(n)nlogn _ ZA(d) Z @

n<N d<N n<N
d|n
kd
- > N
d<N k<N/d
_  X(@A(d) x(k)
P Dy
d<N k<N /d
ZX ZX(d)A(d) Z x(k)
d<N d<N k>N/d

» Since L(1, x) # 0, we infer that

ZX <ZX n)logn ZX Z chk))

d<N n<N d<N k>N/d




Proof

» By the previous proposition, since | Y Jd M| < 2dq/N, we obtain

x(d)A(d) X < 2q‘If(N)
P DD N 2 A
de(N] k>N/d de [N]
> By using U(N) < 2N we have

DIEC USRI

d€e[N] k>N/d

» Inserting this bound to the last identity in the previous slide we have

> X ‘ L <11,x>|( > M *‘”’)‘

de[N] ne(N]

> By partial summation we obtain

x(n)logn  x 10g2 X(n)logn logn
> = + 2

n<N 3<n<N

2)log2 logN Nogr—1
:X( )2g + 5’; Z X(n)+/ g; (Zx(n))dt.

3<n<N 3 3<n<t




Proof

> Using the fact that | >, x(n)| < g, we obtain

N J—
Z x(n)logn < log2 +q(10gN +/ logz2 ldt)
n 2 N 3 t
n<N
__log2  gqlog3
= t3sd
» Inserting this bound to the last estimates
Z X(d)A(d)‘ a4
2 d (1, )]
» We also have
[log N/ logp]
lo d)A(d *
ZX(P) gp :ZX( )d (d) DY TS X(l; )
p<N p d<N p<N a=2 P
» The second sum is bounded since
[log N/ logp] X (%) [log N/ logp] 1 log p
Ssr > Sy > Loy ke o
PN a=2 I3 p<N a=2 I pEP P

for some constant C € R, which in fact we can take C = 1.



Proof

» Now by partial summation we can write

X(p x(p)logp N x(p)logp\ dt
Z logN Z /2 (Z )t(logt)f

PN p Pt P

so that by above we obtain

2 X;p)‘ 10gN<

%

> The estimate | 3, X(d)dA(d)| <7 L(?qx)\ provides

L ‘ lo;z(|L<5q I *C)’

e I, x

;f\)

e ' )rajgtr)f

d<t

which completes the proof.



Dirichlet’s theorem: the second key step

Theorem

If x # xo is a non-principal Dirichlet character modulo g, then
L(1,x) #0.

Proof.

> We form the product of all L(s, x):
1
F(S) = H L(st) = H H W forall s> 1.
x( mod ¢) pta x(mod q) X P

» If m is the smallest positive integer such that p” = 1 (mod g), then
X (p) is an m-th root of unity, say . All such € occur with the same
multiplicity / = ¢(gq)/m as x runs over all the characters modulo g.

» This means that
i
m,(-22)-m(-)
) p B 4

x(mod ¢

where € runs over all the m-th roots of unity.



Proof

» Now since

we have that

» Therefore

so that

() (- o

x( mod ¢q)

» Here we used the inequality (1 — x)"” < 1 — x", which is clearly valid

foralln > 1 and x € [0, 1]. Setting & = ¢(gq) = Im, we thus have

1
F(s) = H L(s, x) >H 1/phs —C(hs)H(l—phs).

Xx( mod ¢) plg



Proof

This implies that for s > 1, that

Fs)= J[ L0 =] (1 - ;) NAC S

x( mod q) plg 1

We show that (*) precludes that two or more of the L(1, x) ’s vanish.

Indeed, assume that L (1, x;) = L (1, x2) = 0 for two characters y; and
X2- Clearly, x1, x2 # Xo- Then F(s) would contain, besides other
factors that are continuous (thus bounded) at s = 1, the factor

L(S, XO)L(Sv Xl)L(s7 X2)
= L(s,x0) (s = 1> (L' (1,x1) +m(5)) (L' (1, x2) +712(5)) ,

where lim_, 71 (s) = lim,—; 72(s) = 0.
The Riemann zeta function has a simple pole at s = 1, and

L(s,x0) = () [Ty (1 = 55), thus

lim(s — 1)L (s, x0) = ¢(q)/q;

s—1

and we would get that lim,_,; F(s) = 0, which would contradict (*).



Proof

If now L(1, x) = 0 for some complex character x (that is, which
assumes complex non-real values), then * is also a character of
modulus g which is distinct from ¥, and clearly L(1,%) = L(1, x) = 0.
But we have just seen that this is impossible.

Thus, if L(s, x) = 0 for some Y, then x is unique and real (it assumes
only the values £1). In order to complete the proof, we will show that
L(1, x) # 0 for all real non-principal characters as well.

From now on, we assume that  is real non-principal character.

Note that y : N — {0, =1} is, in particular, a multiplicative function.

So, if we let
fn)=> x(d) =1xx,
din

then f is also multiplicative.
Note further that since x(p) = +1, we get that

£ =x()+xp)+--+x() =0

forall | € Z, and, in fact, f (p') > 1 whenever 2 | L.



Proof

» Using the fact that f is multiplicative, we get that f(m?) > 1. Thus,

quz—zf Z%:OO'

meZy meZy

> Let us take a closer look at this divergence. We have
fln x(d)
- 0=
n<x n<x td<x

» By using the Dirichlet hyperbola principle and splitting summation
according to whether d < /x or d > /x, we obtain

_ x(d) 1 1 x(d)
6= 2 g 2 gatloan 2 an
1<d< VR 1<1<x/d I<VE JaTI<d<x/t

= G1(x) + Ga().



Proof

» By Abel’s summation formula, we have that
1y ' 1 0 SR B Rl U 9
Z /2 _}W _/] L] ( 1/2) dt = yi/2 +§/1 £3/2

1<t<y
1 1 (Y dr 1 {t}
—yl/2 _ - = __
=y +0( >—|—2 VR A 13/2t

2
1 {t} < {1} 1

=2y!1/2 1 — (/ ~Lar— L —
2 3/2 g 13/2 y1/2

o2 [ U 1 > di

=2y +( 1 - 2 1 e >+0< 1/2+/y Y

1
_ 1/2
=2y"/ +C+0< 1/2)

where C is the constant given by

o L[




Proof

» Hence, we obtain

Gi(x) = >;$72)<2\/§+C+0<\/z>>

1<d</x
x x(d VX
—25 Y M > X940(Y)
1<d</x 1<d<\/

2[( ZX ) (1),
d=1 d>\/x

where we used the fact that

Z X1/2* (1/2,x) +0o(1) = O(1),

1<d< /%
x(d) < 1 >
Y == =0(—).
d>+/x d \/);
» Hence, we conclude that

Gi(x) = 2v/xL(1,x) + O(1).




Proof

» We are left with examining the size of

1 x(d)
Ga(x) = Z 2 Z 412
» The inner sums are bounded by
x(d) 1
‘ Z a7z~ 0<x‘/4 :
Therefore, G,(x) = O(1), since
1 1 1 VE dt

1<i<+/x Vx+1<d<x/t
Vx+1<d<x/t
1<1<x/2

= W(l +2.X1/4) = 0(1)7

» Combining the above estimates, we obtain
G(x) = Gi(x) + Ga(x) = 2v/xL(1, x) + O(1)

Since we know that G(x) tends to infinity with x and, plainly, that this
can happen only if L(1, x) # 0.



Proof of Dirichlet’s theorem
Theorem (Dirichlet)

Let a,q € Zy be coprime integers. Then there are infinitely many prime numbers
p € Psuch that p = a (mod q).

Proof.
> We know that

1 1 1 _
I RO L I ME ) DL
p<N p vie PN P9 x( mod q) PN p
p=a( mod q) (rg)=1 X#X0
> It is easy to see that 1
lim - = 00,
N—oo
PN
(p)=1

since it only differs from > 1/p by a finite number of terms.

PEP<y

» On the other hand, we have shown Zp < XT(”) converges, thus we have

> x| = o,

Xx( mod q) PN
XFX0

» Therefore, the series on the left-hand side of (*) must diverge, and consequently
the Dirichlet’s theorem follows as desired. [



