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Dirichlet characters
Definition
Let q ∈ Z+. A Dirichlet character modulo q is a map χ : Z\{0} → C
satisfying the following rules for all a, b ∈ Z\{0}:

(i) χ(a) = χ(a (mod q));
(ii) χ(ab) = χ(a)χ(b);

(iii) χ(a) = 0 if (a, q) > 1.

Remarks
▶ In fact, (i) and (ii) mean that Dirichlet character modulo q are

homomorphisms of the multiplicative group (Z/qZ)× and property (iii)
extends these maps to Z\{0}.

▶ On the other hand, we can readily see that corresponding to every
multiplicative character ψ ∈ ̂(Z/qZ)× there is χ : Z\{0} → C, a
Dirichlet character modulo q, defined by

χ(a) =

{
ψ(a + qZ) if (a, q) = 1,
0 if (a, q) > 1.

From this definition we immediately see that χ satisfies (i)-(iii).



Remarks
▶ By the previous remark we see that the set of Dirichlet characters

modulo q is a group isomorphic to the multiplicative group (Z/qZ)× of
the units of the ring Z/qZ.

▶ In particular, there are φ(q) Dirichlet characters modulo q.
▶ The identity element of this group is called the principal, or trivial,

character modulo q and is usually denoted by χ0. Thus, χ0 is defined
for all a ∈ Z by

χ0(a) =

{
1, if (a, q) = 1,
0, otherwise .

▶ Let χ be a Dirichlet character modulo q. We define χ by χ(a) = χ(a).
Clearly, χ is also a Dirichlet character modulo q called the conjugate
character of χ.

▶ It is also not difficult to see that, if (a, q) = 1, then χ(a) is a φ(q) th
root of unity. Indeed, if a ∈ (Z/qZ)×, we have

(χ(a))φ(q) = χ
(

aφ(q)
)
= χ(1) = 1.



Orthogonality relations
Notation
Let m ∈ Z+. We will use the following convenient notation:
▶
∑

a (mod m) will always denote the sum over a complete set of residue
classes modulo m.

▶
∑

χ (mod m) will always denote the sum over the φ(m) Dirichlet
characters modulo m.

Applying the first orthogonality relation from Lecture 6 for G = (Z/mZ)×
we obtain the following orthogonality relation for Dirichlet characters:

Theorem (Orthogonality relation I)
▶ If χ is a Dirichlet character modulo m, then

∑
a( mod m)

χ(a) =

{
φ(m) if χ = χ0,

0 if χ ̸= χ0.

▶ If a ∈ Z, then∑
χ( mod m)

χ(a) =
{
φ(m) if a ≡ 1 (modm),
0 if a ̸≡ 1 (modm).



Orthogonality relations

Applying the second orthogonality relation from Lecture 6 for
G = (Z/mZ)× we obtain the following orthogonality relation for Dirichlet
characters:

Theorem (Orthogonality relation II)
▶ If χ1 and χ2 are Dirichlet characters modulo m, then

∑
a( mod m)

χ1(a)χ2(a) =

{
φ(m) if χ1 = χ2,

0 if χ1 ̸= χ2.

▶ If a, b ∈ Z, then

∑
χ( mod m)

χ(a)χ(b) =

{
φ(m) if (a,m) = (b,m) = 1 and a ≡ b (mod m),

0 otherwise .



Examples of Dirichlet characters
▶ For k = 2, the principal character is the only one.
▶ For k = 3, there are two characters, namely

χ0(n) =

{
1 if n ≡ 1, 2 mod 3,
0 if n ≡ 0 mod 3,

χ1(n) =


1 if n ≡ 1 mod 3,
−1 if n ≡ −1 mod 3,
0 if n ≡ 0 mod 3.

.

▶ For k = 4, there are again two characters, namely

χ0(n) =

{
1 if n is odd ,
0 if n is even,

χ1(n) =


1 if n ≡ 1 mod 4
−1 if n ≡ −1 mod 4,
0 if n is even .

▶ For k = 5, there are four characters given in the following table:

n (mod 5) 1 2 3 4 0
χ0(n) 1 1 1 1 0
χ1(n) 1 i −i −1 0
χ2(n) 1 −1 −1 1 0
χ3(n) 1 −i i −1 0



Conductors, induced, primitive and imprimitive characters
Let χ, χ1 be Dirichlet characters modulo q and q1 respectively. Let q1 be a
divisor of q. We say that χ is induced by χ1 or χ1 induces χ if

χ(n) = χ0(n)χ1(n) for all n ∈ Z, (*)

where χ0 is the principal character modulo q.
▶ A Dirichlet character χ modulo q is said to be imprimitive if there

exists a Dirichlet character χ1 modulo q1 that induces χ for some
proper divisor q1 of q.

▶ The conductor of a Dirichlet character χ modulo q is the smallest
divisor q1 of q for which (*) holds.

▶ A Dirichlet character χ modulo q is said to be primitive if the conductor
of χ is simply equal to its modulus q. In other words, χ is primitive, if
it is trivially induced by itself and χ = χ0χ.

Remarks
▶ The principal character χ0 is imprimitive for every integer q > 1.
▶ Let q⋆ be the conductor of a Dirichlet character χ modulo q. Then
χ = χ0χ

⋆, where χ⋆ is a Dirichlet character modulo q⋆, which is
primitive and uniquely determined by χ. This follows from the fact that
q⋆ is the smallest divisor of q for which (*) holds.



Useful result

Lemma
Let m, d ∈ Z+ be such that d | m. If gcd(a, d) = 1 for some a ∈ Z, then
there exists b ∈ Z such that b ≡ a (mod d) and gcd(b,m) = 1.

Proof.
▶ Let m =

∏
i∈[k] pri

i and d =
∏

i∈[k] psi
i , where ri ≥ 1 and 0 ≤ si ≤ ri for

i ∈ [k]. Let n be the product of the prime powers that divide m but not
d. Then n =

∏
i∈[k]
si=0

pri
i and gcd (n, d) = 1.

▶ By the existence of solutions for linear congruences there is x ∈ Z such
that dx ≡ 1 − a (mod n). Then b = a + dx ≡ 1 (mod n) and
gcd (b, n) = 1.

▶ Also,
b ≡ a (mod d).

▶ If gcd (b,m) ̸= 1, there exists a prime p ∈ P that divides both b and m.
However, p does not divide n since gcd (b, n) = 1. It follows that p | d,
and so p divides b − dx = a, which is impossible since (a, d) = 1.

Therefore, gcd (b,m) = 1 and we are done.



Quasiperiod of characters
Definition
Let χ be a Dirichlet character modulo q. We say d is a quasiperiod of χ if
χ(m) = χ(n) whenever m ≡ n (mod d) and (mn, q) = 1. Obviously, every
period is a quasiperiod.

Proposition
Let χ be a Dirichlet character modulo q. Then, χ is imprimitive if and only if there is
a proper divisor d of q which is a quasiperiod of χ. In particular, the conductor of χ
is its quasiperiod.

Proof.
▶ Suppose that χ is imprimitive, then it is induced by a Dirichlet character χ1

modulo d, that is χ = χ0χ1. Take m ≡ n (mod d) with (mn, q) = 1, then
(m, q) = (n, q) = 1 and

χ(m) = χ0(m)χ1(m) = χ1(m) = χ1(n) = χ0(n)χ1(n) = χ(n),

since χ1 has period d.

▶ For the converse implication, we shall construct a Dirichlet character χ⋆

modulo d such that χ = χ0χ
⋆.

▶ For this purpose we will use the following observation if d | q and (n, d) = 1,
then there is k ∈ Z such that (n + dk, q) = 1.



Proof
▶ Then it suffices to set

χ⋆(n) :=

{
χ(n + dk) if (n, d) = 1,
0 if (n, d) > 1,

where k ∈ Z is such that (n + dk, q) = 1.
▶ We note that although there are many possible choices of k ∈ Z, the

value of χ⋆(n) depends only on n (mod d). Indeed, if n ≡ m (mod d)
and (n, d) = (m, d) = 1 then there are integers kn, km ∈ Z such that
(n + dkn, q) = (m + dkm, q) = 1, which immediately implies

χ⋆(n) = χ(n + dkn, q) = χ(m + dkm, q) = χ⋆(m),

since d is the quasiperiod of χ and n + dkn ≡ m + dkm (mod d).
▶ It remains to prove that χ⋆ is a homomorphism. Let m, n ∈ Z be such

that (mn, d) = 1, then (m, d) = (n, d) = 1 and there are km, kn, kmn ∈ Z
such that (m + dkm, q) = (n + dkn, q) = (mn + dkmn, q) = 1. Thus we
have (m + dkm)(n + dkn) ≡ mn + dkmn (mod d) and since χ is
homomorpfism and d is the quasiperiod of χ, we consequently have

χ⋆(mn) = χ(mn + dkmn) = χ((m + dkm)(n + dkn))

= χ(m + dkm)χ(n + dkn) = χ⋆(m)χ⋆(n).



Quasiperiodic characters
Proposition
Let χ be a Dirichlet character modulo q and let d | q and d < q. Then, χ has
quasiperiod d if and only if χ(n) = 1 for all n ≡ 1 (mod d) with (n, q) = 1.

Proof.
▶ Observe that if χ has quasiperiod d, then χ(m) = χ(n) whenever m ≡ n

(mod d) and (mn, q) = 1, which implies the condition above by taking
m = 1, since χ(1) = 1. For the converse, assume that the above
condition holds. Take m ≡ n (mod d) with (m, q) = (n, q) = 1.

▶ Since (m, q) = 1 then we can find m′ ∈ Z such that mm′ ≡ 1 (mod q).
▶ Thus χ(mm′) = χ(1) = 1, since χ has period q.
▶ We also obtain that mm′ ≡ 1 (mod d), since d | q, and consequently

nm′ ≡ mm′ ≡ 1 (mod d).

▶ Since (mm′, q) = (nm′, q) = 1, we obtain by the above condition that

χ(m)χ(m′) = χ(mm′) = 1 = χ(nm′) = χ(n)χ(m′),

which yields χ(n) = χ(m) as desired.



Characterizations of primitivity

Theorem
Let χ be a Dirichlet character modulo q. Then, χ is primitive if and only if
for every proper divisor d of q there exists m ∈ Z satisfying m ≡ 1 (mod d)
and (m, q) = 1 such that χ(m) ̸= 1.

Proof.
The proof readily follows by applying the previous two propositions.

Theorem
Let χ be a Dirichlet character modulo q. Then, the following are equivalent:

(i) χ is primitive;

(ii) if d | q and d < q, then for any a ∈ Z, we have

q∑
n=1

n≡a mod d

χ(n) = 0.



Proof
▶ Assume that condition (i) is true. If χ is primitive, then there is m ∈ Z

satisfying m ≡ 1 (mod d) and (m, q) = 1 such that χ(m) ̸= 1. Then

S =

q∑
n=1

n≡a mod d

χ(n) =
q∑

n=1
n≡am mod d

χ(n) =
q/d∑
k=1

χ(am + dkm)

= χ(m)

q∑
n=1

n≡a mod d

χ(n) = χ(m)S.

▶ Since χ(m) ̸= 1, we deduce that S = 0, and we are done.
▶ Assume that condition (ii) is true. Let d | q and d < q, and a = 1. Then

q∑
n=1

n≡1 mod d

χ(n) = 0,

and since χ(1) = 1, there must be 2 ≤ m ≤ q such that 0 ̸= χ(m) ̸= 1.
▶ But m ≡ 1 (mod d) and (m, q) = 1, hence by the previous theorem χ

must be primitive as desired.



Primitive characters further characterizations
Lemma
Suppose that (q1, q2) = 1 and let χi be a Dirichlet character (mod qi) for
i ∈ [2]. Then χ = χ1χ2 is primitive (mod q1q2) if and only if χ1 and χ2
are both primitive.

Proof.
▶ We first prove the implication (=⇒). Let di be the conductor of χi. If

(mn, q1q2) = 1 and m ≡ n mod d1d2, then χi(m) = χi(n), hence d1d2 is a
quasiperiod of χ. Thus d1d2 = q1q2 since χ is primitive. Therefore, d1 = q1

and d2 = q2 since di | qi for i ∈ [2].

▶ We now prove the reverse implication (⇐=). Let d be the conductor of χ. Set
di = (d, qi) for i ∈ [2]. We show that d1 is a quasiperiod of χ1. Suppose
(mn, q1) = 1 and m ≡ n (mod d1). Choose m0, n0 ∈ Z so that

m0 ≡ m (mod q1), and n0 ≡ n (mod q1),

m0 ≡ 1 (mod q2), and n0 ≡ 1 (mod q2).

Thus m0 ≡ n0 (mod d1) and m0 ≡ n0 (mod d2), hence m0 ≡ n0 (mod d1d2),
but d1d2 = (d, q1q2) = d since d | q1q2. Consequently, m0 ≡ n0 (mod d) and
(m0n0, q1q2) = 1, yielding χ(m0) = χ(n0). Therefore, d1 is a quasiperiod of
χ1, since χ1(m) = χ(m0) = χ(n0) = χ1(n). Since χ1 is primitive, we must
have d1 = q1. Similarly, d2 = q2, and finally d = q1q2.



Explicit formulas for the Dirichlet characters
▶ By the Chinise reminder theorem, or more abstractly, by the structure

theorem for finite abelian groups if q =
∏

p∈P pαp(q), then

(Z/qZ)× ≡
⊗

pαp(q)|q

(Z/pαp(q)Z)×.

In other words, any multiplicative group modulo q is isomorphic to the
direct product of multiplicative groups modulo prime powers.

▶ Therefore, understanding Dirichlet characters on (Z/qZ)×, is reduced
to understand Dirichlet characters on (Z/pαp(q)Z)×.

▶ Let p ∈ P be an odd prime number. Then the corresponding group
(Z/pαZ)× is cyclic. This means that there exists a primitive root g in
(Z/pαZ)×. In fact, we can find a primitive root in (Z/pZ)×, which is
also a primitive root in (Z/pβZ)× for all β ∈ Z+.

▶ If (n, p) = 1 let ν(n) = indg n (mod pα), so that ν(n) is the unique
integer satisfying the conditions

n ≡ gν(n) (mod pα), where 0 ≤ ν(n) < φ (pα) .



Explicit formulas for the Dirichlet characters

▶ For h ∈ N<φ(pα), define χh by the relations

χh(n) = χh(n; pα) =

{
e(hν(n)/φ(pα)) if p ∤ n,
0 if p | n.

▶ Using the properties of indices ν(n) = indg n (mod pα) it is easy to
verify that χh is completely multiplicative and periodic with period pα,
so χh is a Dirichlet character modpα, with χ0 being the principal
character. This verification is left as an exercise!

▶ Since
χh(g) = e(h/φ(pα))

the characters χ0, χ1, . . . , χφ(pα)−1 are distinct because they take
distinct values at g. Therefore, since there are φ(pα) such functions
they represent all the Dirichlet characters (mod pα).

▶ The same construction works for the modulus 2α if α = 1 or α = 2,
using g = 3 as the primitive root.



Explicit formulas for the Dirichlet characters
▶ If α ≥ 3 the modulus 2α has no primitive root and a slightly different

construction is needed to obtain the characters mod 2α.
▶ We know that for every α ≥ 3, and every odd integer n ∈ Z there is a uniquely

determined integer ν(n) such that

n ≡ (−1)(n−1)/25ν(n) (mod 2α), with 1 ≤ ν(n) ≤ φ(2α)/2.

▶ With this knowledge we can construct all the characters (mod 2α) if α ≥ 3.
Let

f (n) =

{
(−1)(n−1)/2 if n is odd ,

0 if n is even ,

and let

g(n) =

{
e(ν(n)/2α−2) if n is odd ,

0 if n is even ,

where ν(n) is the integer given in the previous item.
▶ Then it is easy to verify that each of f and g is a character mod 2α. So is each

product

χa1,a2(n) = χa1,a2(n; 2α) = f (n)a1 g(n)a2 = e
(

a1(n − 1)
4

+
a2ν(n)
2α−2

)
,

where a1 ∈ [2] and a2 ∈ [φ(2α)/2]. Moreover these φ(2α) characters are
distinct so they represent all the characters mod 2α.



Real Dirichlet characters
▶ If χ is a real-valued Dirichlet character (mod m) and (n,m) = 1, the number

χ(n) is both a root of unity and real, so χ(n) = ±1. From the construction from
the previous slides we can determine all real Dirichlet characters (mod pα).

Theorem (Exercise)
For an odd prime p ∈ P and α ∈ Z+, consider the Dirichlet characters

χh(n) = χh(n; pα) =

{
e(hν(n)/φ(pα)) if p ∤ n,
0 if p | n,

for h ∈ [N<φ(pα)].

Then χh is real if, and only if, h = 0 or h = φ(pα)/2. Hence there are exactly two
real characters (mod pα).

▶ The next theorem describes the real characters mod2α when α ≥ 3.

Theorem (Exercise)
If α ≥ 3, consider the Dirichlet characters

χa1,a2(n) = χa1,a2(n; 2α) = e
(

a1(n − 1)
4

+
a2ν(n)
2α−2

)
,

where a1 ∈ [2] and a2 ∈ [φ(2α)/2]. Then χa1,a2 is real if, and only if, a2 = φ(2α)/2
or a2 = φ(2α)/4. Hence there are exactly four real characters (mod 2)α if α ≥ 3.



Primitive Dirichlet characters

Theorem (Exercise)
For an odd prime p ∈ P and α ≥ 2, consider the Dirichlet characters

χh(n) = χh(n; pα) =

{
e(hν(n)/φ(pα)) if p ∤ n,
0 if p | n,

for h ∈ [N<φ(pα)].

Then χh is primitive modpα if, and only if, p ∤ h.

Theorem (Exercise)
If α ≥ 3, consider the Dirichlet characters

χa1,a2(n) = χa1,a2(n; 2α) = e
(

a1(n − 1)
4

+
a2ν(n)
2α−2

)
,

where a1 ∈ [2] and a2 ∈ [φ(2α)/2]. Then χa1,a2 is primitive (mod 2α) if,
and only if, a2 is odd.



Remarks
▶ The character corresponding to h = 0 is the principal character.
▶ When α = 1 the quadratic character χp(n) = (n | p) is the only other

real character (mod p).
▶ For the moduli m = 1, 2 and 4, all the Dirichlet characters are real.
▶ There is only one primitive character modulo 4 defined for all odd

positive integers n by

χ4(n) = (−1)(n−1)/2.

▶ There are two primitive characters modulo 8 defined for all odd positive
integers n by

χ8(n) = (−1)(n2−1)/8, and χ4χ8(n) = (−1)(n−1)/2+(n2−1)/8.

▶ If q = pα is a prime power, the only real primitive characters of
conductor q are χ4, χ8, χ4χ8 and χp. Every real primitive character can
be obtained as the product of these characters.

▶ This implies that the conductor of a real primitive character is of the
form 1,m, 4m or 8m where m is a positive odd squarefree integer.



Dirichlet’s theorem
Theorem (Dirichlet)
Let a, q ∈ Z+ be coprime integers. Then there are infinitely many prime
numbers p ∈ P such that p ≡ a (mod q).

▶ Around 1837, Dirichlet succeeded in using a generalization of Euler’s
proof

∑
p∈P

1
p = ∞ and some group-theoretic tools.

▶ More precisely, Dirichlet proved the divergence of the series∑
p≡a( mod q)

1
p

by discovering a clever expression for the characteristic function

1q,a(n) =

{
1, if n ≡ a (mod q),
0, otherwise .

and showing that

lim
σ→1+

∑
p∈P

1q,a(p)
pσ

= ∞.



The first key identity
Proposition
Let a, q ∈ Z+ be coprime integers and define 1q,a(n) as

1q,a(n) =

{
1, if n ≡ a (mod q),
0, otherwise.

For all n ∈ Z+ we have

1q,a(n) =
1

φ(q)

∑
χ( mod q)

χ(n)χ(a)

where the summation is taken over all Dirichlet characters modulo q.

Proof.
▶ This readily follows from the identity a, n ∈ Z, then

∑
χ( mod q)

χ(n)χ(a) =

{
φ(q) if (n, q) = (a, q) = 1 and n ≡ a (mod q),
0 otherwise,

which is simply the orthogonality relation.



The second key identity

Proposition
Let a, q ∈ Z+ be coprime integers and N > 1 be an integer. Then we have∑

p≤N
p≡a( mod q)

1
p
=

1
φ(q)

∑
p⩽N

(p,q)=1

1
p
+

1
φ(q)

∑
χ( mod q)

χ ̸=χ0

χ(a)
∑
p⩽N

χ(p)
p

Proof.
▶ By the previous proposition we obtain∑

p⩽N
p≡a( mod q)

1
p
=
∑
p⩽N

1q,a(p)
p

=
1

φ(q)

∑
χ( mod q)

χ(a)
∑
p⩽N

χ(p)
p

.

▶ We split the sum according to χ = χ0 or χ ̸= χ0, leading to the claim.
This completes the proof.



Simple bounds for sums of characters

Corollary
Let a, q ∈ Z+ be coprime integers and N > 1 be an integer. Then for any
arithmetic function f : N → C the following holds∑

n≤N
n≡a( mod q)

f (n) =
1

φ(q)

∑
n≤N

(n,q)=1

f (n) +
1

φ(q)

∑
χ( mod q)

χ̸=χ0

χ(a)
∑
n⩽N

χ(n)f (n).

Proposition
For all non-principal Dirichlet characters χ modulo q and all non-negative
integers M < N, we have ∣∣∣∣∣

N∑
n=M+1

χ(n)

∣∣∣∣∣ ≤ φ(q).



Proof
▶ Let K = q⌊(N − M − 1)/q⌋. By the orthognality relation, for all
χ ̸= χ0, we have ∑

a( mod q)

χ(a) = 0.

▶ Hence, by periodicity, we obtain

M+K∑
n=M+1

χ(n) =
K/q∑
j=1

M+jq∑
n=M+1+(j−1)q

χ(n) =
K/q∑
j=1

M+q∑
n=M+1

χ(n) = 0.

▶ The interval (M + K,N] contains at most q integers n1, . . . , nr with
r ∈ [q]. Denoting by ni the residue class of the integer ni in (Z/qZ)×,
we obtain ∣∣∣∣ N∑

n=M+1

χ(n)
∣∣∣∣ ⩽ r∑

i=1
(ni,q)=1

|χ (ni)| ⩽
∑
n⩽q

(n,q)=1

1 = φ(q)

as asserted.



Sums involving Dirichlet characters

Proposition
Let F ∈ C1((1,+∞)) be a decreasing function such that F > 0 and
limx→∞ F(x) = 0. For all non-principal Dirichlet characters χ modulo q
and all real numbers x ⩾ 1, we have∣∣∣∣∑

k>x

χ(k)F(k)
∣∣∣∣ ⩽ 2qF(x).

Proof.
▶ If (bk)k∈Z ⊆ R+ is a monotone, then∣∣∣ n∑

k=m+1

akbk

∣∣∣ ≤ 2max{bm+1, bn} max
m⩽k⩽n

|sk|,

where sk =
∑

x<n≤k χ(n).
▶ Applying this with ak = χ(k) and bk = F(k) the result follows.

This completes the proof.



Definition of L-functions
L-functions
Let χ be a Dirichlet character modulo q ⩾ 2. The L-function, or L-series,
corresponding to χ is the Dirichlet series of χ, given by

L(s, χ) =
∞∑

n=1

χ(n)
ns for all s = σ + it ∈ C with σ > 1.

▶ By the absolute convergence of L(s, χ) for s ∈ C with σ > 1 we have

L(s, χ) =
∏
p∈P

(
1 − χ(p)

ps

)−1

.

▶ If χ = χ0 we also have

L (s, χ0) =

∞∑
n=1

(n,q)=1

1
ns = ζ(s)

∏
p|q

(
1 − 1

ps

)
.

▶ If χ ̸= χ0 then L(s, χ) converges for all s ∈ C with σ > 0, by the
previous proposition.



Dirichlet’s theorem: the first key step
Theorem
If χ ̸= χ0 is a non-principal Dirichlet character modulo q satisfying

L(1, χ) ̸= 0,

then the series ∑
p∈P

χ(p)
p

converges.

Proof.
Let N ⩾ 2 be an integer. We will estimate in two different ways the sum∑

1≤n⩽N

χ(n) log n
n

.

▶ Since log n = Λ ⋆ 1(n), we have∑
n⩽N

χ(n) log n
n

=
∑
n⩽N

χ(n)
n

∑
d|n

Λ(d).



Proof
▶ Interchanging the order of summation and using multiplicativity of the

Dirichlet characters we can write∑
n⩽N

χ(n) log n
n

=
∑
d⩽N

Λ(d)
∑
n⩽N
d|n

χ(n)
n

=
∑
d⩽N

Λ(d)
∑

k⩽N/d

χ(kd)
kd

=
∑
d⩽N

χ(d)Λ(d)
d

∑
k⩽N/d

χ(k)
k

= L(1, χ)
∑
d⩽N

χ(d)Λ(d)
d

−
∑
d⩽N

χ(d)Λ(d)
d

∑
k>N/d

χ(k)
k
.

▶ Since L(1, χ) ̸= 0, we infer that∑
d⩽N

χ(d)Λ(d)
d

=
1

L(1, χ)

(∑
n⩽N

χ(n) log n
n

+
∑
d⩽N

χ(d)Λ(d)
d

∑
k>N/d

χ(k)
k

)
.



Proof
▶ By the previous proposition, since |

∑
k>N/d

χ(k)
k | ≤ 2dq/N, we obtain∣∣∣∣ ∑

d∈[N]

χ(d)Λ(d)
d

∑
k>N/d

χ(k)
k

∣∣∣∣ ≤ 2q
N

∑
d∈[N]

Λ(d) =
2qΨ(N)

N
.

▶ By using Ψ(N) < 2N we have∣∣ ∑
d∈[N]

χ(d)Λ(d)
d

∑
k>N/d

χ(k)
k

∣∣∣∣ < 4q.

▶ Inserting this bound to the last identity in the previous slide we have∣∣∣∣ ∑
d∈[N]

χ(d)Λ(d)
d

∣∣∣∣ < 1
|L(1, χ)|

(∣∣∣∣ ∑
n∈[N]

χ(n) log n
n

∣∣∣∣+ 4q
)
.

▶ By partial summation we obtain∑
n⩽N

χ(n) log n
n

=
χ(2) log 2

2
+
∑

3⩽n⩽N

χ(n) log n
n

=
χ(2) log 2

2
+

logN
N

∑
3⩽n⩽N

χ(n) +
∫ N

3

log t − 1
t2

( ∑
3⩽n⩽t

χ(n)
)

dt.



Proof
▶ Using the fact that |

∑
3⩽n⩽N χ(n)| < q, we obtain∣∣∣∣∑

n⩽N

χ(n) log n
n

∣∣∣∣ ≤ log 2
2

+ q
(
logN

N
+

∫ N

3

log t − 1
t2 dt

)
=

log 2
2

+
q log 3

3
< q.

▶ Inserting this bound to the last estimates∣∣∣∣∑
d⩽N

χ(d)Λ(d)
d

∣∣∣∣ < 5q
|L(1, χ)| .

▶ We also have∑
p⩽N

χ(p) log p
p

=
∑
d⩽N

χ(d)Λ(d)
d

−
∑
p⩽N

log p
⌊log N/ log p⌋∑

α=2

χ (pα)

pα
.

▶ The second sum is bounded since∣∣∣∣∑
p⩽N

log p
⌊log N/ log p⌋∑

α=2

χ (pα)

pα

∣∣∣∣ ⩽ ∑
p⩽N

log p
⌊log N/ log p⌋∑

α=2

1
pα

⩽
∑
p∈P

log p
p(p − 1)

< C,

for some constant C ∈ R+, which in fact we can take C = 1.



Proof
▶ Now by partial summation we can write

∑
p⩽N

χ(p)
p

=
1

logN

∑
p⩽N

χ(p) log p
p

+

∫ N

2

(∑
p⩽t

χ(p) log p
p

)
dt

t(log t)2 ,

so that by above we obtain∣∣∣∣∑
p⩽N

χ(p)
p

∣∣∣∣ < 1
logN

(∣∣∣∣∑
d⩽N

χ(d)Λ(d)
d

∣∣∣∣+ C
)

+

∫ N

2

(∣∣∣∣∑
d⩽t

χ(d)Λ(d)
d

∣∣∣∣+ C
)

dt
t(log t)2 .

▶ The estimate |
∑

d⩽N
χ(d)Λ(d)

d | < 5q
|L(1,χ)| provides∣∣∣∣∑

p⩽N

χ(p)
p

∣∣∣∣ < 1
log 2

(
5q

|L(1, χ)|
+ C

)
,

which completes the proof.



Dirichlet’s theorem: the second key step
Theorem
If χ ̸= χ0 is a non-principal Dirichlet character modulo q, then

L(1, χ) ̸= 0.

Proof.
▶ We form the product of all L(s, χ):

F(s) =
∏

χ( mod q)

L(s, χ) =
∏
p∤q

∏
χ( mod q)

1
1 − (χ(p)/ps)

for all s > 1.

▶ If m is the smallest positive integer such that pm ≡ 1 (mod q), then
χ(p) is an m-th root of unity, say ε. All such ε occur with the same
multiplicity l = ϕ(q)/m as χ runs over all the characters modulo q.

▶ This means that ∏
χ( mod q)

(
1 − χ(p)

ps

)
=
∏
ε

(
1 − ε

ps

)l

,

where ε runs over all the m-th roots of unity.



Proof
▶ Now since ∏

ε

(x − ε) = xm − 1,

we have that ∏
ε

(
1 − ε

x

)
= 1 − 1

xm .

▶ Therefore ∏
ε

(
1 − ε

ps

)
= 1 − 1

pms ,

so that ∏
χ( mod q)

(
1 − χ(p)

ps

)
=

(
1 − 1

pms

)l

≤ 1 − 1
plms .

▶ Here we used the inequality (1 − x)n ≤ 1 − xn, which is clearly valid
for all n ≥ 1 and x ∈ [0, 1]. Setting h = ϕ(q) = lm, we thus have

F(s) =
∏

χ( mod q)

L(s, χ) ≥
∏
p∤q

1
1 − (1/phs)

= ζ(hs)
∏
p|q

(
1 − 1

phs

)
.



Proof
▶ This implies that for s > 1, that

F(s) =
∏

χ( mod q)

L(s, χ) ≥ ζ(hs)
∏
p|q

(
1 − 1

p

)
>
ϕ(q)

q
. (*)

▶ We show that (*) precludes that two or more of the L(1, χ) ’s vanish.
▶ Indeed, assume that L (1, χ1) = L (1, χ2) = 0 for two characters χ1 and
χ2. Clearly, χ1, χ2 ̸= χ0. Then F(s) would contain, besides other
factors that are continuous (thus bounded) at s = 1, the factor

L (s, χ0)L (s, χ1)L (s, χ2)

= L (s, χ0) (s − 1)2 (L′ (1, χ1) + η1(s)) (L′ (1, χ2) + η2(s)) ,

where lims→1 η1(s) = lims→1 η2(s) = 0.
▶ The Riemann zeta function has a simple pole at s = 1, and

L (s, χ0) = ζ(s)
∏

p|k
(
1 − 1

ps

)
, thus

lim
s→1

(s − 1)L (s, χ0) = ϕ(q)/q,

and we would get that lims→1 F(s) = 0, which would contradict (*).



Proof
▶ If now L(1, χ) = 0 for some complex character χ (that is, which

assumes complex non-real values), then χ is also a character of
modulus q which is distinct from χ, and clearly L(1, χ) = L(1, χ) = 0.
But we have just seen that this is impossible.

▶ Thus, if L(s, χ) = 0 for some χ, then χ is unique and real (it assumes
only the values ±1). In order to complete the proof, we will show that
L(1, χ) ̸= 0 for all real non-principal characters as well.

▶ From now on, we assume that χ is real non-principal character.
▶ Note that χ : N → {0,±1} is, in particular, a multiplicative function.

So, if we let
f (n) =

∑
d|n

χ(d) = 1 ∗ χ,

then f is also multiplicative.
▶ Note further that since χ(p) = ±1, we get that

f
(
pl) = χ(1) + χ(p) + · · ·+ χ

(
pl) ≥ 0

for all l ∈ Z+, and, in fact, f
(
pl
)
≥ 1 whenever 2 | l.



Proof

▶ Using the fact that f is multiplicative, we get that f (m2) ≥ 1. Thus,

∞∑
n=1

f (n)
n1/2 ≥

∑
m∈Z+

f (m2)

m
≥
∑

m∈Z+

1
m

= ∞.

▶ Let us take a closer look at this divergence. We have

G(x) =
∑
n≤x

f (n)
n1/2 =

∑
n≤x

1
n1/2

∑
d|n

χ(d) =
∑
td≤x

χ(d)
(td)1/2 .

▶ By using the Dirichlet hyperbola principle and splitting summation
according to whether d ≤

√
x or d >

√
x, we obtain

G(x) =
∑

1≤d≤
√

x

χ(d)
d1/2

∑
1≤t≤x/d

1
t1/2 +

∑
t≤

√
x

1
t1/2

∑
√

x+1≤d≤x/t

χ(d)
d1/2

= G1(x) + G2(x).



Proof
▶ By Abel’s summation formula, we have that

∑
1≤t≤y

1
t1/2 =

⌊y⌋
y1/2 −

∫ t

1
⌊t⌋
(

1
t1/2

)′

dt =
y − {y}

y1/2 +
1
2

∫ y

1

t − {t}
t3/2 dt

=y1/2 + O
(

1
y1/2

)
+

1
2

∫ y

1

dt
t1/2 − 1

2

∫ y

1

{t}
t3/2 dt

=2y1/2 − 1 − 1
2

(∫ ∞

1

{t}
t3/2 dt −

∫ ∞

y

{t}
t3/2 dt

)
+ O

(
1

y1/2

)
=2y1/2 +

(
−1 − 1

2

∫ ∞

1

{t}
t3/2 dt

)
+ O

(
1

y1/2 +

∫ ∞

y

dt
t3/2

)
=2y1/2 + C + O

(
1

y1/2

)
,

where C is the constant given by

C = −1 − 1
2

∫ ∞

1

{t}
t3/2 dt.



Proof
▶ Hence, we obtain

G1(x) =
∑

1≤d≤
√

x

χ(d)
d1/2

(
2
√

x
d
+ C + O

(√
d
x

))

= 2
√

x
∑

1≤d≤
√

x

χ(d)
d

+ C
∑

1≤d≤
√

x

χ(d)
d1/2 + O

(√
x√
x

)

= 2
√

x

 ∞∑
d=1

χ(d)
d

−
∑

d>
√

x

χ(d)
d

+ O(1),

where we used the fact that∑
1≤d≤

√
x

χ(d)
d1/2 = L(1/2, χ) + o(1) = O(1),

∑
d>

√
x

χ(d)
d

= O
(

1√
x

)
.

▶ Hence, we conclude that

G1(x) = 2
√

xL(1, χ) + O(1).



Proof
▶ We are left with examining the size of

G2(x) =
∑

1≤t≤
√

x

1
t1/2

∑
√

x+1≤d≤x/t

χ(d)
d1/2 .

▶ The inner sums are bounded by∣∣∣∣ ∑
√

x+1≤d≤x/t

χ(d)
d1/2

∣∣∣∣ = O
(

1
x1/4

)
.

Therefore, G2(x) = O(1), since

G2(x) = O
(

1
x1/4

∑
1≤t≤x1/2

1
t1/2

)
= O

(
1

x1/4

(
1 +

∫ √
x

1

dt
t1/2

))

=
1

x1/4

(
1 + 2x1/4) = O(1),

▶ Combining the above estimates, we obtain

G(x) = G1(x) + G2(x) = 2
√

xL(1, χ) + O(1)

Since we know that G(x) tends to infinity with x and, plainly, that this
can happen only if L(1, χ) ̸= 0.



Proof of Dirichlet’s theorem
Theorem (Dirichlet)
Let a, q ∈ Z+ be coprime integers. Then there are infinitely many prime numbers
p ∈ P such that p ≡ a (mod q).

Proof.
▶ We know that∑

p≤N
p≡a( mod q)

1
p
=

1
φ(q)

∑
p⩽N

(p,q)=1

1
p
+

1
φ(q)

∑
χ( mod q)

χ̸=χ0

χ(a)
∑
p⩽N

χ(p)
p

. (*)

▶ It is easy to see that
lim

N→∞

∑
p⩽N

(p,q)=1

1
p
= ∞,

since it only differs from
∑

p∈P≤N
1/p by a finite number of terms.

▶ On the other hand, we have shown
∑

p⩽N
χ(p)

p converges, thus we have∣∣∣∣ ∑
χ( mod q)

χ̸=χ0

χ(a)
∑
p⩽N

χ(p)
p

∣∣∣∣ = O(1).

▶ Therefore, the series on the left-hand side of (*) must diverge, and consequently
the Dirichlet’s theorem follows as desired.


