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Jensen’s formula
We denote by DR = {z ∈ C : |z| < R} and CR = {z ∈ C : |z| = R} the open
disc and circle of radius R ∈ R+ centered at the origin.

Theorem
Let Ω be an open set that contains the closure of a disc DR and suppose that
f is holomorphic in Ω, and f (0) ̸= 0, f vanishes nowhere on the circle CR. If
z1, . . . , zN denote the zeros of f inside the disc (counted with multiplicities,
i.e. each zero appears in the sequence as many times as its order), then

log | f (0)| =
N∑

k=1

log

(
|zk|
R

)
+

1
2π

∫ 2π

0
log | f (Reiθ)|dθ. (*)

Proof.
The proof of the theorem consists of several steps.
▶ Step 1. First, we observe that if f1 and f2 are two functions satisfying

the hypotheses and the conclusion of the theorem, then the product f1 f2
also satisfies the hypothesis of the theorem and formula (*). This is a
simple consequence of the fact that log xy = log x + log y whenever
x, y ∈ R+, and that the set of zeros of f1 f2 is the union of the sets of
zeros of f1 and f2.



Proof
▶ Step 2. The function

g(z) =
f (z)

(z − z1) · · · (z − zN)

initially defined on Ω \ {z1, . . . , zN}, is bounded near each zj. Therefore each zj

is a removable singularity, and hence we can write

f (z) = (z − z1) · · · (z − zN) g(z),

where g is holomorphic in Ω and nowhere vanishing in the closure of DR. By
Step 1, it suffices to prove Jensen’s formula for functions like g that vanish
nowhere, and for functions of the form z − zj.

▶ Step 3. We first prove (*) for a function g that vanishes nowhere in the closure
of DR. More precisely, we must establish the following identity:

log |g(0)| = 1
2π

∫ 2π

0
log |g(Reiθ)|dθ. (**)

In a slightly larger disc, we can write g(z) = eh(z) where h is holomorphic in
that disc. This is possible since discs are simply connected, and we can define
h = log g. Now |g(z)| = |eh(z)| = |eRe(h(z))+i Im(h(z))| = eRe(h(z)), so that
log |g(z)| = Re(h(z)). Then the mean value property for holomorphic
functions (in our case with h = log g) immediately implies the desired formula
for its real part, which is precisely (**).



Proof
▶ Step 4. The last step is to prove the formula for functions of the form

f (z) = z − w, where w ∈ DR. That is, we must show that

log |w| = log

(
|w|
R

)
+

1
2π

∫ 2π

0
log |Reiθ − w|dθ.

Since log(|w|/R) = log |w| − logR and
log |Reiθ − w| = logR + log |eiθ − w/R|, it suffices to prove that∫ 2π

0
log |eiθ − a|dθ = 0, whenever |a| < 1.

This in turn is equivalent (after the change of variables θ 7→ −θ ) to∫ 2π

0
log |1 − aeiθ|dθ = 0, whenever |a| < 1.

To prove this, we use the function F(z) = 1 − az, which vanishes
nowhere in the closure of the unit disc. As a consequence, there exists a
holomorphic function G in a disc of radius greater than 1 such that
F(z) = eG(z). Then |F| = eRe(G), and therefore log |F| = Re(G). Since
F(0) = 1 we have log |F(0)| = 0, and an application of the mean value
property to the real part of holomorphic function G, which is log |F(z)|
concludes the proof of the theorem.



Growth of a holomorphic function and its number of zeros
▶ From Jensen’s formula we can derive an identity linking the growth of a

holomorphic function with its number of zeros inside a disc.
▶ If f is a holomorphic function on the closure of a disc DR, we denote by

nf (r) the number of zeros of f (counted with their multiplicities) inside
the disc Dr, with 0 < r < R.

▶ A simple but useful observation is that nf (r) is a non-decreasing
function of r.

Lemma
Under the assumptions of the previous theorem, we have∫ R

0
nf (r)

dr
r

=

N∑
k=1

log

∣∣∣∣ R
zk

∣∣∣∣.
Proof.
▶ First we have

N∑
k=1

log

∣∣∣∣ R
zk

∣∣∣∣ = N∑
k=1

∫ R

|zk|

dr
r
.



Proof
▶ If we define the characteristic function

ηk(r) =

{
1 if r > |zk| ,
0 if r ≤ |zk| ,

then

N∑
k=1

ηk(r) = nf (r).

▶ The lemma is proved using
N∑

k=1

∫ R

|zk|

dr
r

=

N∑
k=1

∫ R

0
ηk(r)

dr
r

=

∫ R

0

(
N∑

k=1

ηk(r)

)
dr
r

=

∫ R

0
nf (r)

dr
r
.

This completes the proof of the lemma.

Corollary
As a corollary of Jensen’s formula and the previous lemma, we obtain∫ R

0
nf (r)

dr
r

=
1

2π

∫ 2π

0
log | f (Reiθ)|dθ − log | f (0)|.



Functions of finite order
▶ Let f be an entire function. If there exist ρ ∈ R+ and constants

A,B ∈ R+ such that

| f (z)| ≤ AeB|z|ρ for all z ∈ C,

then we say that f has an order of growth ≤ ρ.
▶ We define the order of growth of f as

ρf = inf ρ,

where the infimum is taken over all ρ > 0 such that f has an order of
growth ≤ ρ.

▶ For example, the order of growth of the function ez2
is 2.

Theorem
If f is an entire function that has an order of growth ≤ ρ, then:

(i) nf (r) ≤ Crρ for some C > 0 and all sufficiently large r.

(ii) If z1, z2, . . . denote the zeros of f , with zk ̸= 0, then for all s > ρ we have
∞∑

k=1

1
|zk|s

< ∞.



Proof
▶ It suffices to prove the estimate for nf (r) when f (0) ̸= 0. Indeed, consider

F(z) = f (z)/zl, where l is the order of the zero of f at the origin. Then nf (r)
and nF(r) differ only by a constant, and F also has an of order of growth ≤ ρ.

▶ If f (0) ̸= 0 we may use formula from the previous corollary, namely∫ R

0
nf (x)

dx
x

=
1

2π

∫ 2π

0
log | f (Reiθ)|dθ − log | f (0)|.

▶ Choosing R = 2r, this formula implies∫ 2r

r
nf (x)

dx
x

≤ 1
2π

∫ 2π

0
log | f (Reiθ)|dθ − log | f (0)|.

▶ On the one hand, since nf (r) is increasing, we have∫ 2r

r
nf (x)

dx
x

≥ nf (r)
∫ 2r

r

dx
x

= nf (r)[log 2r − log r] = nf (r) log 2.

▶ On the other hand, the growth condition on f (for all large r) gives∫ 2π

0
log |f (Reiθ)|dθ ≤

∫ 2π

0
log |AeBRρ

|dθ ≤ C′rρ.

▶ Consequently, nf (r) ≤ Crρ for an appropriate C > 0 and all sufficiently large r.



Proof

▶ The following estimates prove the second part of the theorem:

∑
|zk|≥1

|zk|−s
=

∞∑
j=0

 ∑
2j≤|zk|<2j+1

|zk|−s


≤

∞∑
j=0

2−jsn
(
2j+1)

≤ c
∞∑

j=0

2−js2(j+1)ρ

≤ c′
∞∑

j=0

(
2ρ−s)j

< ∞

▶ The last series converges because s > ρ.
This completes the proof of the theorem.



Infinite products
▶ Given a sequence (an)n∈Z+

⊆ C, we say that the product
∞∏

n=1

(1 + an)

converges if the limit

lim
N→∞

N∏
n=1

(1 + an)

of the partial products exists.
▶ A useful necessary condition that guarantees the existence of a product

is contained in the following proposition.

Proposition
If
∑

n∈Z+
|an| < ∞, then the product

∞∏
n=1

(1 + an)

converges. Moreover, the product converges to 0 if and only if one of its
factors is 0.



Proof
▶ If

∑
n∈Z+

|an| converges, then for all large n we must have |an| < 1/2.
We may assume, without loss of generality, that this inequality holds
for all n ∈ Z+.

▶ Hence, we can define log (1 + an) by the usual power series, and this
logarithm satisfies the property that 1 + z = elog(1+z) whenever |z| < 1.

▶ Hence we may write the partial products as follows:

N∏
n=1

(1 + an) =

N∏
n=1

elog(1+an) = eBN

where BN =
∑N

n=1 bn with bn = log (1 + an).
▶ By the power series expansion we see that | log(1 + z)| ≤ 2|z|, if

|z| < 1/2. Hence |bn| ≤ 2 |an|, so BN converges as N → ∞ to a
complex number, say B.

▶ Since the exponential function is continuous, we conclude that eBN

converges to eB as N → ∞, and the first part follows.
▶ Observe also that if 1 + an ̸= 0 for all n ∈ Z+, then the product

converges to a non-zero limit since it is expressed as eB.



Infinite products of holomorphic functions

Proposition
Suppose (Fn)n∈Z+

is a sequence of holomorphic functions on the open set Ω.
If there exist constants cn > 0 such that∑

n∈Z+

cn < ∞ and |Fn(z)− 1| ≤ cn for all z ∈ Ω,

then:

(i) The product
∏∞

n=1 Fn(z) converges uniformly in Ω to a holomorphic
function F(z).

(ii) If Fn(z) does not vanish for any n, then

F′(z)
F(z)

=

∞∑
n=1

F′
n(z)

Fn(z)
.



Proof
▶ To prove the first statement, note that for each z we may argue as in the

previous proposition if we write Fn(z) = 1 + an(z), with |an(z)| ≤ cn.
▶ Then, we observe that the estimates are actually uniform in z because

the cn ’s are constants. It follows that the product converges uniformly
to a holomorphic function, which we denote by F(z).

▶ To establish the second part of the theorem, suppose that K is a compact
subset of Ω, and let

GN(z) =
N∏

n=1

Fn(z).

▶ We have just proved that limN→∞ GN = F uniformly in Ω. Hence, the
sequence (G′

N)N∈Z+
converges uniformly to F′ in K.

▶ Since GN is uniformly bounded from below on K, we conclude that
limN→∞ G′

N/GN = F′/F uniformly on K, and because K is an arbitrary
compact subset of Ω, the limit holds for every point of Ω.

▶ Moreover, a simple calculation yields

G′
N

GN
=

N∑
n=1

F′
n

Fn
,

so part (ii) of the proposition is also proved.



Canonical factors
▶ For each integer k ≥ 0 we define canonical factors by

E0(z) = 1 − z and Ek(z) = (1 − z)ez+z2/2+···+zk/k, for k ≥ 1.

The integer k is called the degree of the canonical factor.

Lemma
If |z| ≤ 1/2, then |Ek(z)− 1| ≤ 2e|z|k+1.

Proof.
▶ If |z| ≤ 1/2, then with the logarithm defined in terms of the power series, we

have 1 − z = elog(1−z), and therefore

Ek(z) = elog(1−z)+z+z2/2+···+zk/k = ew

where w = −
∑∞

n=k+1 zn/n. Observe that since |z| ≤ 1/2 we have

|w| ≤ |z|k+1
∞∑

n=k+1

|z|n−k−1/n ≤ |z|k+1
∞∑
j=0

2−j ≤ 2|z|k+1.

▶ In particular, we have |w| ≤ 1 and this implies that

|1 − Ek(z)| = |1 − ew| ≤ e|w| ≤ 2e|z|k+1.



Weierstrass infinite products
Theorem
Given any sequence (an)n∈Z+ ⊆ C with limn→∞ |an| = ∞, there exists an
entire function f that vanishes at all z = an and nowhere else. Any other
such entire function is of the form f (z)eg(z), where g is entire.

Proof.
▶ Recall that if a holomorphic function f vanishes at z = a, then the

multiplicity of the zero a is the integer m so that

f (z) = (z − a)mg(z),

where g is holomorphic and nowhere vanishing in a neighborhood of a.
▶ To begin the proof, note first that if f1 and f2 are two entire functions

that vanish at all z = an and nowhere else, then f1/f2 has removable
singularities at all the points an. Hence f1/f2 is entire and vanishes
nowhere, so that there exists an entire function g with

f1(z)/f2(z) = eg(z).

▶ Therefore f1(z) = f2(z)eg(z) as desired.



Proof

▶ We have to construct a function that vanishes at all the points of the
sequence (an)n∈Z+

and nowhere else.
▶ Suppose that we are given a zero of order m at the origin, and that

a1, a2 . . . are all non-zero. Then we define the Weierstrass product by

f (z) = zm
∞∏

n=1

En (z/an) .

▶ We claim that this function has the required properties; that is,
(i) f is entire with a zero of order m at the origin;

(ii) f has zeros at each point of the sequence (an)n∈Z+ ;
(iii) f vanishes nowhere else.

▶ Fix R > 0, and suppose that z belongs to the disc |z| < R. We shall
prove that f has all the desired properties in this disc, and since R is
arbitrary, this will prove the theorem.



Proof

▶ We can consider two types of factors in the formula defining f , with the
choice depending on whether |an| ≤ 2R or |an| > 2R.

▶ There are only finitely many terms of the first kind (since
limn→∞ |an| = ∞), and we see that the finite product vanishes at all
z = an with |an| < R.

▶ If |an| ≥ 2R, we have |z/an| ≤ 1/2, hence the previous lemma implies

|En (z/an)− 1| ≤ 2e
∣∣∣∣ z
an

∣∣∣∣n+1

≤ e
2n .

▶ Therefore, the product ∏
|an|≥2R

En (z/an)

defines a holomorphic function when |z| < R, and does not vanish in
that disc by the previous propositions.

▶ This shows that the function f has the desired properties, and the proof
of Weierstrass’s theorem is complete.



Hadamard’s theorem
Theorem (Hadamard)
Suppose f is entire and has growth order ρ0. Let k ∈ Z be so that
k ≤ ρ0 < k + 1. If a1, a2, . . . denote the (non-zero) zeros of f , then

f (z) = eP(z)zm
∞∏

n=1

Ek (z/an) ,

where P is a polynomial of degree ≤ k, and m is the order of the zero of f at
z = 0, and Ek are the canonical factors for k ∈ N.

▶ We gather a few lemmas needed in the proof of Hadamard’s theorem.

Lemma
The canonical products satisfy

|Ek(z)| ≥ e−c|z|k+1
if |z| ≤ 1/2,

and
|Ek(z)| ≥ |1 − z|e−c|z|k if |z| ≥ 1/2.

Here, we allow the implied constant c = ck to depend on k ∈ N.



Proof
▶ If |z| ≤ 1/2 we can use the power series to define the logarithm of

1 − z, so that

Ek(z) = elog(1−z)+
∑k

n=1 zn/n = e−
∑∞

n=k+1 zn/n = ew.

Since |ew| ≥ e−|w| and |w| ≤ c|z|k+1, the first part follows.
▶ For the second part, simply observe that if |z| ≥ 1/2, then

|Ek(z)| = |1 − z|
∣∣∣ez+z2/2+···+zk/k

∣∣∣ ,
and that there exists c′ > 0 such that∣∣∣ez+z2/2+···+zk/k

∣∣∣ ≥ e−|z+z2/2+···+zk/k| ≥ e−c′|z|k .

Lemma
For any s ∈ R+ with ρ0 < s < k + 1, we have∣∣∣∣∣

∞∏
n=1

Ek (z/an)

∣∣∣∣∣ ≥ e−c|z|s ,

except possibly when z belongs to the union of the discs centered at an of
radius |an|−k−1, for n ∈ Z+.



Proof
▶ First, we write

∞∏
n=1

Ek (z/an) =
∏

|an|≤2|z|

Ek (z/an)
∏

|an|>2|z|

Ek (z/an)

▶ For the second product the estimate asserted above holds for all z ∈ C.
Indeed, by the previous lemma∣∣∣∣ ∏

|an|>2|z|

Ek (z/an)

∣∣∣∣ = ∏
|an|>2|z|

|Ek (z/an)|

≥
∏

|an|>2|z|

e−c|z/an|k+1
≥ e−c|z|k+1 ∑

|an|>2|z||an|−k−1

.

▶ But |an| > 2|z| and s < k + 1, so we must have

|an|−k−1
= |an|−s |an|s−k−1 ≤ C |an|−s |z|s−k−1.

▶ Therefore, the fact that
∑

n∈Z+
|an|−s converges implies that∣∣∣∣ ∏

|an|>2|z|

Ek (z/an)

∣∣∣∣ ≥ e−c|z|s

for some constant c > 0, which may depend on k and s.



Proof
▶ To estimate the first product, we use the second part of the previous

lemma, and write∣∣∣∣ ∏
|an|≤2|z|

Ek (z/an)

∣∣∣∣ ≥ ∏
|an|≤2|z|

∣∣∣∣1 − z
an

∣∣∣∣ ∏
|an|≤2|z|

e−c|z/an|k . (*)

▶ We now note that∏
|an|≤2|z|

e−c|z/an|k = e−c|z|k
∑

|an|≤2|z||an|−k

,

and again, we have |an|−k
= |an|−s |an|s−k ≤ C |an|−s |z|s−k, thereby

proving that ∏
|an|≤2|z|

e−c′|z/an|k ≥ e−c|z|s .

▶ The estimate on the first product on the right-hand side of (*) will
require the restriction on z imposed in the statement of the lemma.

▶ Indeed, whenever z does not belong to a disc of radius |an|−k−1

centered at an, we must have |an − z| ≥ |an|−k−1.



Proof
▶ Therefore ∏

|an|≤2|z|

∣∣∣∣1 − z
an

∣∣∣∣ = ∏
|an|≤2|z|

∣∣∣∣an − z
an

∣∣∣∣
≥

∏
|an|≤2|z|

|an|−k−1 |an|−1

=
∏

|an|≤2|z|

|an|−k−2
.

▶ Finally, the estimate for the first product follows from the fact that

(k + 2)
∑

|an|≤2|z|

log |an| ≤ (k + 2)nf (2|z|) log 2|z|

≤ c|z|s log 2|z|

≤ c′|z|s
′

for any s′ > s, and the second inequality follows as n(2|z|) ≤ c|z|s.
▶ Since we restricted s to satisfy s > ρ0, we can take an initial s

sufficiently close to ρ0, so that the assertion of the lemma is established
(with s being replaced by s′).



Useful corollary
Corollary
There exists a sequence of radii, r1, r2, . . ., with rm → ∞, such that∣∣∣∣ ∞∏

n=1

Ek (z/an)

∣∣∣∣ ≥ e−c|z|s for |z| = rm.

Proof.
▶ Since

∑
n∈Z+

|an|−k−1 <∞, there exists N ∈ Z+ so that
∞∑

n=N

|an|−k−1 < 1/10.

▶ Therefore, given any two consecutive large integers L and L + 1, we can find
r ∈ R+ with L ≤ r ≤ L + 1, such that the circle of radius r centered at the
origin does not intersect the forbidden discs from the previous lemma.

▶ For otherwise, the union of the intervals

In =

[
|an| −

1
|an|k+1 , |an|+

1
|an|k+1

]
(which are of length 2 |an|−k−1) would cover all the interval [L, L + 1].

▶ This would imply 2
∑∞

n=N |an|−k−1 ≥ 1, which is a contradiction. We can then
apply the previous lemma with |z| = r to conclude the proof.



Proof of Hadamard’s theorem
▶ Let

E(z) = zm
∞∏

n=1

Ek (z/an) .

▶ To prove that E is entire, we repeat the argument in the proof of
Weierstrass theorem. Namely, we have

|Ek (z/an)− 1| ≤ 2e
∣∣∣∣ z
an

∣∣∣∣k+1

, for all large n ∈ Z+,

and that the series
∑

n∈Z+
|an|−k−1 converges. (Recall ρ0 < s < k + 1.)

▶ Moreover, E has the zeros of f , therefore f/E is holomorphic and
nowhere vanishing. Hence

f (z)
E(z)

= eg(z)

for some entire function g.
▶ By the fact that f has growth order ρ0, and because of the estimate from

below for E obtained in the previous corollary, we have

eRe(g(z)) =

∣∣∣∣ f (z)
E(z)

∣∣∣∣ ≤ c′ec|z|s , whenever |z| = rm.



Proof of Hadamard’s theorem
▶ This proves that

Re(g(z)) ≤ C|z|s, for |z| = rm,

where (rm)m∈Z+
⊆ R+ is a a sequence such that limm→∞ rm = ∞.

▶ We have to prove that g is a polynomial of degree ≤ s.
▶ We can expand g in a power series centered at the origin

g(z) =
∞∑

n=0

anzn

▶ As a simple application of Cauchy’s integral formulas, we may write

1
2π

∫ 2π

0
g
(
reiθ) e−inθdθ =

{
anrn if n ≥ 0,
0 if n < 0.

▶ By taking complex conjugates we find that

1
2π

∫ 2π

0
g (reiθ)e−inθdθ = 0

whenever n > 0.



Proof
▶ Since 2u = g + g we add the above two equations and obtain

anrn =
1
π

∫ 2π

0
u
(
reiθ) e−inθdθ, whenever n > 0.

▶ For n = 0 we find that

2Re (a0) =
1
π

∫ 2π

0
u
(
reiθ) dθ.

▶ Now we recall the simple fact that whenever n ̸= 0, the integral of e−inθ

over any circle centered at the origin vanishes. Therefore

an =
1
πrn

∫ 2π

0

[
u
(
reiθ)− Crs] e−inθdθ when n > 0.

▶ Taking r = rm, we consequently obtain

|an| ≤
1

πrn
m

∫ 2π

0

[
Crs

m − u
(
rmeiθ)] dθ ≤ 2Crs−n

m − 2Re (a0) r−n
m .

▶ Letting m → ∞ we deduce an = 0 for any n > s. This completes the
proof of Hadamard’s theorem.



Example
▶ The function sinπs is entire and of order one, and its zeros are at

s = 0,±1,±2, . . ., and so, by Hadamard’s theorem we can write

sinπs = seH(s)
∞∏

n=1

(
1 − s2

n2

)
,

where H(s) = as + b.
▶ Taking the logarithmic derivative of this equation, we find that

π
cosπs
sinπs

=
1
s
+ H′(s)−

∞∑
n=1

2s
n2 − s2 .

▶ Passage to the limit as s → 0 gives a = 0, and so H(s) = b. Thus,

sinπs
s

= c
∞∏

n=1

(
1 − s2

n2

)
.

▶ Passing again to the limit as s → 0 gives c = π, i.e.

sinπs = πs
∞∏

n=1

(
1 − s2

n2

)
.



Euler’s gamma function
▶ The Euler gamma function Γ(s) is defined by the equation

1
Γ(s)

= seγs
∞∏

n=1

(
1 +

s
n

)
e−s/n

where γ is Euler’s constant.
▶ It follows from the definition that Γ−1(s) is an entire function of order

at most one.
▶ Moreover, Γ(s) is an analytic function in the entire s-plane except for

the points s = 0,−1,−2, . . ., where it has simple poles.

Theorem (Euler’s formula)
For every s ∈ C \ {−n : n ∈ N}, we have

Γ(s) =
1
s

∞∏
n=1

(
1 +

1
n

)s (
1 +

s
n

)−1
.

In other words, Γ(s) is a meromorphic function on C with simple poles at 0
and at the negative integers and with no zeros.



Proof

▶ From the definition of an infinite product and from the definition of the
function Γ(s), we obtain

1
Γ(s)

= s lim
m→∞

es(1+ 1
2 +...+ 1

m −log m) · lim
m→∞

m∏
n=1

(
1 +

s
n

)
e−

s
n

= s lim
m→∞

m−s
m∏

n=1

(
1 +

s
n

)
= s lim

m→∞

m−1∏
n=1

(
1 +

1
n

)−s m∏
n=1

(
1 +

s
n

)
= s lim

m→∞

m∏
n=1

(
1 +

1
n

)−s (
1 +

s
n

)(
1 +

1
m

)s

= s
∞∏

n=1

(
1 +

1
n

)−s (
1 +

s
n

)
,

which is what we had to prove.



Properties of Gamma function
Corollary
For every s ∈ C \ {−n : n ∈ N}, we have

Γ(s) = lim
n→∞

(n − 1)! · ns

s(s + 1) · . . . · (s + n − 1)
.

Proof.
▶ From the previous theorem we have

Γ(s) = lim
n→∞

s−1
n−1∏
m=1

(
1 +

1
m

)s (
1 +

s
m

)−1

= lim
n→∞

2s · 3s

2s · . . . · ns

(n−1)s

s · (s+1)
1 · . . . · (s+n−1)

n−1

= lim
n→∞

1 · 2 · . . . · (n − 1)ns

s · (s + 1) · . . . · (s + n − 1)

as desired.

Corollary
We also have Γ(1) = Γ(2) = 1.



Properties of Gamma function
Theorem (Functional equation)
▶ We have Γ(s + 1) = sΓ(s) for all s ∈ C \ {−n : n ∈ N}.

▶ In particular, Γ(n + 1) = n! for all n ∈ N, and ress=−mΓ(s) =
(−1)m

m! .

Proof.
▶ We have

Γ(s + 1)
Γ(s)

=
s

s + 1
lim

m→∞

m∏
n=1

(
1 + 1

n

)s+1 (
1 + s+1

n

)−1(
1 + 1

n

)s (
1 + s

n

)−1

=
s

s + 1
lim

m→∞

m∏
n=1

n + 1
n

· n + s
n + s + 1

=
s

s + 1
lim

m→∞

(m + 1)(s + 1)
m + 1 + s

= s.

This completes the proof.

Corollary (Duplication formula)

Γ(2s)Γ (1/2) = 22s−1Γ (s) Γ (s + 1/2) for all s ∈ C \ (−N).



Properties of Gamma function
Theorem (Reflection formula)

sinπs
π

=
1

Γ(s)Γ(1 − s)
for all s ∈ C.

Proof.
▶ We know that

sinπs
πs

=

∞∏
n=1

(
1 − s2

n2

)
.

▶ On the other hand, we have

1
Γ(s)Γ(−s)

= −s2
∞∏

n=1

(
1 − s2

n2

)
▶ But we also know that Γ(1 − s) = −sΓ(−s), and the result follows.

Corollary
As a corollary we obtain that Γ(1/2) =

√
π.



Integral representation of the gamma function
Theorem (Integral representation)
Suppose that Re(s) > 0. Then

Γ(s) =
∫ ∞

0
e−tts−1dt.

Proof.
▶ We know that

Γ(s) = lim
n→∞

n! · ns

s(s + 1)(s + 2) · · · (s + n)
.

▶ We have to establish two things. Firstly, we will show that∫ n

0

(
1 − t

n

)n
ts−1dt =

n! · ns

s(s + 1)(s + 2) · . . . · (s + n)
for all n ∈ Z+.

▶ Secondly, we will show that

lim
n→∞

∫ n

0

(
1 − t

n

)n
ts−1dt =

∫ ∞

0
e−tts−1dt,

which will complete the proof.



Proof
▶ Indeed, when s > 0 the above integral converges and we have∫ n

0

(
1 − t

n

)n
ts−1dt = ns

∫ 1

0
(1 − u)nus−1du

= ns n
s

∫ 1

0
(1 − u)n−1usdu

= ns n(n − 1)
s(s + 1)

∫ 1

0
(1 − u)n−2us+1du

...

= ns n(n − 1) · . . . · 1
s(s + 1) · . . . · (s + n − 1)

∫ 1

0
us+n−1du

=
n! · ns

s(s + 1)(s + 2) · . . . · (s + n)
.

▶ Thus, it suffices to prove that

lim
n→∞

∫ n

0

(
1 − t

n

)n
ts−1dt =

∫ ∞

0
e−tts−1dt.



Proof
▶ To this end, we consider the functions

fn(t) =

{
(1 − t/n)nts−1 if 0 ≤ t ≤ n,
0 if t > n.

▶ Each of these functions is in L1([0,∞)) and satisfies the inequality

| fn(t)| ≤ e−ttσ−1, where σ = Re(s).

▶ The last inequality is easily verified by taking logarithms and noting

n log
(

1 − t
n

)
= −t − t2

2n
− t3

3n2 − · · · < −t.

▶ Furthermore,

lim
n→∞

fn(t) = ts−1 lim
n→∞

(
1 − t

n

)n
= e−tts−1.

▶ Since the function e−ttσ−1 is in L1([0,∞)), the dominated convergence
theorem yields

lim
n→∞

∫ ∞

0
fn(t)dt =

∫ ∞

0
lim

n→∞
fn(t)dt =

∫ ∞

0
e−tts−1dt,

which completes the proof of the lemma.



Stirling’s formula
Theorem (Stirling’s formula. Exercise)
Suppose that s ∈ mathbbC such that | arg s| < π. Then

log Γ(s) = (s − 1/2) log s − s + log
√

2π +

∫ ∞

0

ψ(u)
u + s

du.

Here log s denotes the principal branch of the logarithm and ψ(u) = {u} − 1/2.

Corollary (Exercise)
Suppose that 0 < δ < π and | arg s| < π − δ. Then

log Γ(s) = (s − 1/2) log s − s + log
√

2π + O
(
|s|−1

)
uniformly as |s| → ∞, and Γ′(s)

Γ(s) = log s + O
(
|s|−1) , where the implied constants

depending at most on δ.

Corollary (Exercise)
Suppose that α ≤ σ ≤ β and |t| ≥ 1. Then

|Γ(σ + it)| =
√

2π|t|σ−1/2 exp(−π|t|/2)
(
1 + O(|t|−1)

)
,

where the implied constant depending at most on α and β.



Riemann zeta-function
Definition (Riemann zeta-function)
The Riemann zeta-function ζ(s) is defined for all complex numbers
s = σ + it such that σ > 1 by

ζ(s) =
∞∑

n=1

1
ns .

▶ By the absolute convergence all complex numbers s = σ + it such that
σ > 1 we also have the Euler product formula

ζ(s) =
∏
p∈P

(
1 − 1

ps

)−1

.

▶ The Euler product formula enables us to see that ζ(s) ̸= 0 in the
half-plane σ > 1. Indeed, for σ > 1 we have

1
|ζ(s)|

=
∏
p∈P

∣∣∣∣1 − 1
ps

∣∣∣∣ ≤∏
p∈P

(
1 +

1
pσ

)
≤

∞∑
n=1

1
nσ

≤ 1 +

∫ ∞

1

dt
tσ

=
σ

σ − 1
.

Thus |ζ(s)| ≥ σ−1
σ > 0.



Remarks
Euler’s summation formula
If f ∈ C1([a, b]), and ψ(x) = {x} − 1/2 for x ∈ R, then by summation by parts we
obtain the following identity∑

a<n⩽b

f (n) =
∫ b

a
f (x)dx + f (a)ψ(a)− f (b)ψ(b) +

∫ b

a
f ′(x)ψ(x)dx.

▶ By the summation by parts formula we can derive
▶ Let x ⩾ 1 be a real number and s = σ+ it with σ > 1. By the Euler summation

formula with a = 1, b = x and f (x) = x−s, we can write∑
n⩽x

1
ns =

1
2
+

1 − x1−s

s − 1
− ψ(x)

xs − s
∫ x

1

ψ(u)
us+1 du.

▶ Taking x → ∞ we obtain

ζ(s) =
1
2
+

1
s − 1

− s
∫ ∞

1

ψ(u)
us+1 du. (*)

▶ Since |ψ(x)| ⩽ 1
2 , the integral converges for σ > 0 and is uniformly convergent

in any finite region to the right of the line σ = 0.
▶ This implies that it defines an analytic function in the half-plane σ > 0, and

therefore (*) extends ζ to a meromorphic function in this half-plane, which is
analytic except for a simple pole at s = 1 with residue 1.



The Theta function
▶ Replacing x by πn2x in the integral defining Γ(s/2) gives

π−s/2Γ
( s

2

)
n−s =

∫ ∞

0
xs/2−1e−πn2xdx for all σ > 0.

▶ The purpose is to sum both sides of this equation. To this end, we
define the following two Theta functions. For all x > 0, we set

ω(x) =
∞∑

n=1

e−πn2x and θ(x) = 2ω(x) + 1 =
∑
n∈Z

e−πn2x.

▶ Then g(t) = e−πt2
satisfies

∫
R g(t)dt = 1, and its Fourier transform is

ĝ(u) = e−πu2
.

▶ For a Schwartz function f , by the Poisson summation formula, we have∑
n∈Z f̂ (n) =

∑
n∈Z f (n), hence

θ(x) =
∑
n∈Z

g(
√

xn) = x−1/2θ(x−1) for all x > 0.



The Theta function
▶ Summing this equation over n ∈ Z+ and interchanging the sum and

integral, we obtain for all σ > 1 that

π−s/2Γ
( s

2

)
ζ(s) =

∫ ∞

0
xs/2−1ω(x)dx,

since the sum and integral converge absolutely in the half-plane σ > 1.
▶ Splitting the integral

∫∞
0 =

∫ 1
0 +

∫∞
1 and changing the variables

x 7→ 1/x in the first integral yields

π−s/2Γ
( s

2

)
ζ(s) =

∫ ∞

1
xs/2−1ω(x)dx +

∫ ∞

1
x−s/2−1ω

(
1
x

)
dx.

▶ Using θ(x−1) = x1/2θ(x) we may write

ω

(
1
x

)
= x1/2ω(x) +

x1/2 − 1
2

,

and consequently we obtain

π−s/2Γ
( s

2

)
ζ(s) = −1

s
+

1
s − 1

+

∫ ∞

1
ω(x)

(
xs/2 + x(1−s)/2

) dx
x
,

whenever σ > 1.



Functional equation
Theorem
Let

Ξ(s) = π−s/2Γ(s/2)ζ(s)

= −1
s
+

1
s − 1

+
1
2

∫ ∞

1
(θ(x)− 1)

(
xs/2 + x(1−s)/2

) dx
x
,

where θ is the Theta function

θ(x) =
∑
n∈Z

e−πn2x.

▶ Then the function Ξ(s) can be extended analytically in the whole
complex plane to a meromorphic function having simple poles at s = 0
and s = 1, and satisfies the functional equation Ξ(s) = Ξ(1 − s).

▶ Thus the Riemann zeta-function can be extended analytically in the
whole complex plane to a meromorphic function having a simple pole
at s = 1 with residue 1. Furthermore, for all s ∈ C\{1}, we have

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1 − s)ζ(1 − s).



Proof
▶ For σ > 1 we have

Ξ(s) = −1
s
+

1
s − 1

+

∫ ∞

1
ω(x)

(
xs/2 + x(1−s)/2

) dx
x
. (*)

▶ Since ω(x) = O(e−πx) as x → ∞, we infer that the integral is
absolutely convergent for all s ∈ C whereas the left-hand side is a
meromorphic function on σ > 0. This implies that

(i) The identity (*) is valid for all σ > 0.
(ii) The function Ξ(s) can be defined by this identity as a meromorphic

function on C with simple poles at s = 0 and s = 1.
(iii) Since the right-hand side of (*) is invariant under the substitution

s 7→ 1 − s, we obtain Ξ(s) = Ξ(1 − s).
(iv) The function s 7→ ξ(s) := s(s − 1)Ξ(s) is entire on C. Indeed, if σ > 0,

the factor s − 1 counters the pole at s = 1, and the result on all C follows
from the functional equation.

▶ It remains to show that the functional equation can be written as

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1 − s)ζ(1 − s).



Proof
▶ Since Ξ(s) = Ξ(1 − s), we have

Γ(s/2)ζ(s) = πs/2Ξ(s) = πs/2Ξ(1 − s) = πs−1/2Γ

(
1 − s

2

)
ζ(1 − s).

▶ Multiplying both sides by π−1/22s−1Γ
( 1+s

2

)
and using the duplication

formula, asserting that Γ(s) = π−1/22s−1Γ (s/2) Γ ((s + 1)/2) we see

Γ(s)ζ(s) = (2π)s−1Γ

(
1 − s

2

)
Γ

(
1 + s

2

)
ζ(1 − s)

▶ Now the reflection formula sinπs
π = 1

Γ(s)Γ(1−s) , implies that

ζ(s) = (2π)s−1
(

sinπs
sin(π(1 + s)/2)

)
Γ(1 − s)ζ(1 − s)

and the result follows from the identity

sinπs = 2 sin
(πs

2

)
sin
(π

2
(1 + s)

)
.

The proof is complete.



Remarks
▶ ζ(s) has simple zeros at s = −2,−4,−6,−8, . . .. Indeed, since the

integral in (*) is absolutely convergent for all s ∈ C and since ω(x) > 0
for all x ∈ R, we have

Ξ(−2n) =
1

2n
− 1

2n + 1
+

∫ ∞

1
ω(x)

(
x−n + xn+1/2

) dx
x

> 0

for all n ∈ Z+. The result follows from the fact that Γ(s/2) has simple
poles at s = −2n.

▶ These zeros are the only ones lying in the region σ < 0. They are called
trivial zeros of the Riemann zeta-function.

▶ For all 0 < σ < 1, we have ζ(σ) ̸= 0. Indeed, for all σ > 0 we see

ζ(s) =
s

s − 1
− s
∫ ∞

1

{x}
xs+1 dx

we infer that, for all 0 < σ < 1, we get∣∣∣∣ζ(σ)− σ

σ − 1

∣∣∣∣ < σ

∫ ∞

1

dx
xσ+1 = 1,

which implies that ζ(σ) < 1 + σ/(σ − 1) for all 0 < σ < 1.
▶ Hence ζ(σ) < 0 for all 1

2 ⩽ σ < 1, and the functional equation implies
the asserted result.


