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Jensen’s formula
We denote by Dg = {z € C: |z < R} and Cg = {z € C : |z] = R} the open
disc and circle of radius R € R centered at the origin.
Theorem
Let Q) be an open set that contains the closure of a disc Dg and suppose that
f is holomorphic in Q, and f(0) # 0, f vanishes nowhere on the circle Cg. If
21, - - -, 2y denote the zeros of f inside the disc (counted with multiplicities,
i.e. each zero appears in the sequence as many times as its order), then

I .
log | £(0) \—Zlo ('Zk|>+2/0 log | f(Re'?)|d6. (*)

Proof.

The proof of the theorem consists of several steps.

> Step 1. First, we observe that if f] and f, are two functions satisfying
the hypotheses and the conclusion of the theorem, then the product f; f>
also satisfies the hypothesis of the theorem and formula (*). This is a
simple consequence of the fact that log xy = log x 4+ log y whenever
x,y € R, and that the set of zeros of f f> is the union of the sets of
zeros of fi and f>.



Proof

» Step 2. The function

f@)

z—z) - (z—zn)

g(z) = (

initially defined on Q \ {zi, ..., zv}, is bounded near each z;. Therefore each z;
is a removable singularity, and hence we can write

fl@)=(—a) - (z—w)e@),
where g is holomorphic in €2 and nowhere vanishing in the closure of Dg. By
Step 1, it suffices to prove Jensen’s formula for functions like g that vanish
nowhere, and for functions of the form z — z;.

Step 3. We first prove (*) for a function g that vanishes nowhere in the closure
of Dg. More precisely, we must establish the following identity:

1 27 ;
tog ¢(0)| = 5 [ log lg(Re") a5 ()
0

In a slightly larger disc, we can write g(z) = ¢" where / is holomorphic in
that disc. This is possible since discs are simply connected, and we can define
h =log g. Now |g(z)| = ["?)| = |eRet@)+iImGi@)| — (Re(i2) gq that

log |g(z)| = Re(h(z)). Then the mean value property for holomorphic
functions (in our case with & = log g) immediately implies the desired formula
for its real part, which is precisely (**).




Proof

> Step 4. The last step is to prove the formula for functions of the form

f(z) = z— w, where w € Dg. That is, we must show that

1 21 )
log |w| = log <Z|) + %/0 log |Re™® — w|d6.
Since log(|w|/R) = log |[w| — log R and

log |Re® — w| = log R + log |e” — w/R)|, it suffices to prove that

2
/ log e —aldd =0, whenever |a| < 1.
0
This in turn is equivalent (after the change of variables 6 — —6 ) to
2T
/ log |1 — ae®|dd =0, whenever |a| < 1.
0

To prove this, we use the function F(z) = 1 — az, which vanishes
nowhere in the closure of the unit disc. As a consequence, there exists a
holomorphic function G in a disc of radius greater than 1 such that

F(z) = ¢°@. Then |F| = (%), and therefore log |[F| = Re(G). Since
F(0) = 1 we have log |F(0)| = 0, and an application of the mean value
property to the real part of holomorphic function G, which is log |F(z)|
concludes the proof of the theorem. O



Growth of a holomorphic function and its number of zeros

» From Jensen’s formula we can derive an identity linking the growth of a
holomorphic function with its number of zeros inside a disc.

» If f is a holomorphic function on the closure of a disc Dg, we denote by
ny(7) the number of zeros of f (counted with their multiplicities) inside
the disc D,, with 0 < r < R.

» A simple but useful observation is that ns(r) is a non-decreasing
function of r.

Lemma
Under the assumptions of the previous theorem, we have

R N
dr
| =10
0 U

R
2k

Proof.

» First we have




Proof

» If we define the characteristic function
1 ifr > |z,

m(r) = .
0 ifr <z,

then

N
> m(r) = ny(r).
k=1

» The lemma is proved using

N R N R R [ N R
dr / dr dr dr
TS [T = [ (Snm) T = [ wn
This completes the proof of the lemma. 0

Corollary

As a corollary of Jensen’s formula and the previous lemma, we obtain

a0 = L g £ (Re) 6 — 108 | £(0
[ =5 [ gl re?)iao - tog | 0).



Functions of finite order

> Letf be an entire function. If there exist p € R and constants
A, B € R such that

|f(2)] < AP forall zeC,

then we say that f has an order of growth < p.
» We define the order of growth of f as

pr = inf p,
where the infimum is taken over all p > 0 such that f has an order of
growth < p.
» For example, the order of growth of the function & is 2.
Theorem
If f is an entire function that has an order of growth < p, then:
(i) ne(r) < Cr? for some C > 0 and all sufficiently large r.
(i1) Ifz1,22, - . - denote the zeros of f, with z; # 0, then for all s > p we have

g <
s 0.



Proof

v

v

v

v

v

It suffices to prove the estimate for ny(r) when f(0) # 0. Indeed, consider
F(z) = f(z) /7', where [ is the order of the zero of f at the origin. Then n,(r)
and ng(r) differ only by a constant, and F also has an of order of growth < p.

If £(0) # 0 we may use formula from the previous corollary, namely

R 21 .
[ @S = 5 [ toslr(re)id0 —10g | 0).

Choosing R = 2r, this formula implies

2r dx 1 21 ;
[ S < 5 [ ol rre)ido ~10g 7 0)

On the one hand, since n(r) is increasing, we have

2r 2r
/ nf(x)% > nf(r)/ % = ny(r)[log2r — log r] = ny(r) log 2.

On the other hand, the growth condition on f (for all large r) gives
21 27
/ log [f(R€'9)|d9 < / log |AeBRp\d0 < .
0 0

Consequently, ns(r) < Cr” for an appropriate C > 0 and all sufficiently large r.



Proof

» The following estimates prove the second part of the theorem:

> |Zk|7s=i Yoo fal™

Jai| >1 =0 \2< 5] <2t
<§ 27 (27)

< chﬁzU*‘)P
j=0

< (277)
j=0

» The last series converges because s > p.

This completes the proof of the theorem.



Infinite products
» Given a sequence (a,)qcz, € C, we say that the product

H(l Jran)

converges if the limit
N

lim 1+a
N—o0 ( * n)
n=1
of the partial products exists.
> A useful necessary condition that guarantees the existence of a product

is contained in the following proposition.

Proposition
If> ez, lan| < oo, then the product

[a+a
n=1

converges. Moreover, the product converges to 0 if and only if one of its
factors is 0.



Proof

If > ,cz, lan| converges, then for all large n we must have |a,| < 1/2.
We may assume, without loss of generality, that this inequality holds
foralln € Z,..

Hence, we can define log (1 + a,,) by the usual power series, and this
logarithm satisfies the property that 1 + z = ¢'°2(1+%) whenever lz| < 1.

Hence we may write the partial products as follows:
N N

(14a,) = elog(l+a) — By
1

n=1 n—=

where By = Zivzl b, with b, = log (1 + a,).

By the power series expansion we see that |log(1 + z)| < 2[z], if
lz| < 1/2. Hence |b,| < 2]a,|, so By converges as N — oo to a
complex number, say B.

Since the exponential function is continuous, we conclude that &by
converges to ¢ as N — oo, and the first part follows.

Observe also that if 1 + a,, # 0 for all n € Z_, then the product

converges to a non-zero limit since it is expressed as e®. OJ



Infinite products of holomorphic functions

Proposition

Suppose (Fy)ncz.,. is a sequence of holomorphic functions on the open set €.
If there exist constants c,, > 0 such that

Z cpn<oo and |F,(z) —1|<c¢, forall z€Q,
n€Zy
then:

(i) The product [],2 | F,(z) converges uniformly in X to a holomorphic
Sunction F(z).

(ii) If F,(2) does not vanish for any n, then

F'(z)  ~=Fi2)
F(z) =2 (2)

n=1

=



Proof

To prove the first statement, note that for each z we may argue as in the
previous proposition if we write F,,(z) = 1 + a,(z), with |a,(z)] < ¢,.
Then, we observe that the estimates are actually uniform in z because
the ¢, ’s are constants. It follows that the product converges uniformly
to a holomorphic function, which we denote by F(z).

To establish the second part of the theorem, suppose that K is a compact
subset of €2, and let

Gr(z) = [[ Fa).

We have just proved that limy_, o, Gy = F uniformly in 2. Hence, the
sequence (Gy)yez, converges uniformly to F’ in K.

Since Gy is uniformly bounded from below on K, we conclude that
limy_, 00 Gy /Gy = F'/F uniformly on K, and because K is an arbitrary
compact subset of €2, the limit holds for every point of (2.

Moreover, a simple calculation yields

Gy _yF
GN —1 Fn7

so part (ii) of the proposition is also proved. [



Canonical factors
» For each integer k > 0 we define canonical factors by

Eo(z)=1—z and Eg(z)=(1—z)ets /2% fork > 1.
The integer k is called the degree of the canonical factor.

Lemma
If |2l < 1/2, then |Ex(z) = 1] < 2ez|*".

Proof.

> If |z] < 1/2, then with the logarithm defined in terms of the power series, we
have 1 — z = ¢'°2(1=9  and therefore

Ei(z) = pos(l=a+atd 24k _
where w = —>°"°, | Z"/n. Observe that since |z| < 1/2 we have
o0 oo} .
w < 12T Y e T < Y D27 <2
n=k+1 Jj=0

» In particular, we have |w| < 1 and this implies that

11— E(z)] = |1 — "] < e|w] < 2elz|. 0



Weierstrass infinite products

Theorem

Given any sequence (ay)nez . € Cwithlim,_, la,| = oo, there exists an
entire function f that vanishes at all z = a, and nowhere else. Any other
such entire function is of the form f(z)e$ @) where g is entire.

Proof.

» Recall that if a holomorphic function f vanishes at z = a, then the
multiplicity of the zero a is the integer m so that

f(@) = (z—a)"g(2),

where g is holomorphic and nowhere vanishing in a neighborhood of a.

» To begin the proof, note first that if f; and f, are two entire functions
that vanish at all z = a,, and nowhere else, then f /f> has removable
singularities at all the points a,. Hence fi /f; is entire and vanishes
nowhere, so that there exists an entire function g with

f(2)/f(z) = 8.

> Therefore f(z) = f>(z)e¢®) as desired.



Proof

» We have to construct a function that vanishes at all the points of the
sequence (a,),cz, and nowhere else.

» Suppose that we are given a zero of order m at the origin, and that
ai,a; ... are all non-zero. Then we define the Weierstrass product by

o0

f@) =2"]] En(z/an).

n=1

» We claim that this function has the required properties; that is,
(1) f is entire with a zero of order m at the origin;
(ii) f has zeros at each point of the sequence (a,)nez. ;
(iii) f vanishes nowhere else.
> Fix R > 0, and suppose that z belongs to the disc |z| < R. We shall
prove that f has all the desired properties in this disc, and since R is
arbitrary, this will prove the theorem.



Proof

We can consider two types of factors in the formula defining f, with the
choice depending on whether |a,| < 2R or |a,| > 2R.

There are only finitely many terms of the first kind (since
lim,,—, o |an| = 00), and we see that the finite product vanishes at all
7z = a, with |a,| < R.

If |a,| > 2R, we have |z/a,| < 1/2, hence the previous lemma implies
z n+1 e
E, n) — 1] <2e|— < —.
Bl -1l <2¢| 2 < 2

Therefore, the product

H En (Z/an)

lan| >2R
defines a holomorphic function when |z| < R, and does not vanish in
that disc by the previous propositions.

This shows that the function f has the desired properties, and the proof
of Weierstrass’s theorem is complete. O



Hadamard’s theorem

Theorem (Hadamard)

Suppose f is entire and has growth order py. Let k € 7 be so that
k<po<k+1. Ifay,ay,...denote the (non-zero) zeros of f, then

f2) = O[] Ex (z/an)

n=1

where P is a polynomial of degree < k, and m is the order of the zero of f at
z =0, and E}. are the canonical factors for k € N.

» We gather a few lemmas needed in the proof of Hadamard’s theorem.

Lemma
The canonical products satisfy

‘k-f—]

|Ex(z)| > e~k if |z <1/2,

and )
E(@)| >[I —zle™F0if o] > 1/2.

Here, we allow the implied constant ¢ = cy to depend on k € N.



Proof

> If |z] < 1/2 we can use the power series to define the logarithm of
1 — z, so that

Ek(Z) _ elog(l—z)-‘rzﬁ:lz"/n — e S 2/ — e
Since |e¢*| > e~ "l and |w| < c|z|¥t!, the first part follows.
» For the second part, simply observe that if |z| > 1/2, then

Ee(2)] = |1 — 2| | e+ /2H+2 /K]

and that there exists ¢’ > 0 such that
ez+zz/2+-~+zk/k’ > e—|z+zz/2+--~+zk/k| > efc'lz\". 0

Lemma
Forany s € Ry with py < s < k+ 1, we have

> e—c\z\‘r

)

11 & z/an)

except possibly when z belongs to the union of the discs centered at a,, of
radius |a,| """, forn € Z.



Proof

» First, we write

HEk (z/an) = H Ei (z/ay) H Ey (z/an)

an| <2z |an|>2]z]

» For the second product the estimate asserted above holds for all z € C.
Indeed, by the previous lemma

II EcG/a)|= T] I|Ec(z/an)l

|an|>2]z]| lan|>2|z]|
k k41 i
> I | ecle/al T S gl T g 5oyl

lan|>2[z]
» But |a,| > 2|z] and s < k + 1, so we must have
< Clay| ™" 2~
> Therefore, the fact that 3, ., la,| " converges implies that

I E(/an)

lan|>2|z

—k—1 —s s—k—1
|an| = |an| " |ay|

—elalf
ekl

for some constant ¢ > 0, which may depend on & and s.



Proof

To estimate the first product, we use the second part of the previous
lemma, and write

II EcG/a

lan| <212

H e—cle/anl" ()

jan| <21z

- I

Z
11— =

a
|an| <2]z]

n

‘We now note that

k k —k
H e~cl/anl’ = gl Xjay <apalanl ™

|an| <2]z]

and again, we have |a,| " = |a,| ™ @, " < Cla,| ™ |z]**, thereby
proving that

e le/anl" 5 p=clal’.

|an| <2]z]

The estimate on the first product on the right-hand side of (*) will
require the restriction on z imposed in the statement of the lemma.
Indeed, whenever z does not belong to a disc of radius |a,| k-t
centered at a,, we must have |a, — z| > |an|_k_l.



Proof

» Therefore
= II n — 2

lan| <21z

> H |an|7k71|an|71

lan| <22

—k—2
= H || .

an] <2z

an an

» Finally, the estimate for the first product follows from the fact that
(k+2) > loglan| < (k+2)np(2Jz]) log2lz]
|an|§2‘z‘
< clz[* log 2[z]
< C/‘Z|S/
for any s’ > s, and the second inequality follows as n(2|z]) < c|z|*.
> Since we restricted s to satisfy s > pg, we can take an initial s

sufficiently close to py, so that the assertion of the lemma is established
(with s being replaced by s”). O



Useful corollary
Corollary
There exists a sequence of radii, r1, 12, . .., With r,, — 00, such that

oo

T1E /an)
Proof. =

> Since ZnEZ+ lan| F7' < oo, there exists N € Z so that

>~k for 2| = Fin.

oo

> a7 < 1/10.

n=N

» Therefore, given any two consecutive large integers L and L 4 1, we can find
r € Ry with L < r < L+ 1, such that the circle of radius r centered at the
origin does not intersect the forbidden discs from the previous lemma.

» For otherwise, the union of the intervals

1 1
L = ||an| — Pk lan| + T[T

(which are of length 2 |a,| ~*~") would cover all the interval [L, L + 1].

» This would imply 2>~ |au| ~*=1'> 1, which is a contradiction. We can then
apply the previous lemma with |z| = r to conclude the proof. O



Proof of Hadamard’s theorem
> Let

o0
E(z) = 2" || Ex (z/an) -
n=1
» To prove that E is entire, we repeat the argument in the proof of
Weierstrass theorem. Namely, we have
k+1

|Ex (z/an) — 1| < 2e|—| , foralllarge n€Z,,

n

~

and that the series ), .,
» Moreover, E has the zeros of f, therefore f/E is holomorphic and
nowhere vanishing. Hence

|an B

for some entire function g.

- converges. (Recall pg < s <k+1.)

> By the fact that f has growth order py, and because of the estimate from

below for E obtained in the previous corollary, we have

Re(e@) _ |/ f(z)

EQ) < el whenever |z| = 1.




Proof of Hadamard’s theorem
» This proves that

Re(g(z)) < Clz',  for |z = ry,

where (7,)mez, € Ry is a a sequence such that lim,, o0 1,y = 00.
» We have to prove that g is a polynomial of degree < s.
» We can expand g in a power series centered at the origin

oo
g(x) =) au"
n=0

> As a simple application of Cauchy’s integral formulas, we may write

1 [ a,r ifn >0,

i0 7in0d0 _
g (re) e {o ifn <0.

» By taking complex conjugates we find that

2 Jo

1 27

), g (re®)e=df = 0

whenever n > 0.



Proof

Since 2u = g + g we add the above two equations and obtain

1 [ o
ar’t = — u (re’g) e "dh,  whenever n > 0.
T Jo

For n = 0 we find that

27
2Re (ap) = %/ u (re’p) do.
0

Now we recall the simple fact that whenever n # 0, the integral of e ~"?

over any circle centered at the origin vanishes. Therefore

1 27 X i
a, = / [u (re’e) — CVY] e ™340 when n>0.
r't 0
Taking r = r,,, we consequently obtain
27
la,| < / [Crfn —u (r,neie)} df <2Cr;" —2Re(ag)r,".
wry Jo

Letting m — oo we deduce a,, = 0 for any n > s. This completes the
proof of Hadamard’s theorem. O



Example
» The function sin 7s is entire and of order one, and its zeros are at

s =0,41,42, ..., and so, by Hadamard’s theorem we can write
) T s
. . s 5
sin s = se H(l n2> ,
n=1

where H(s) = as + b.
» Taking the logarithmic derivative of this equation, we find that

oo

cosms 1 , 2s
— =—+H'(s) — E -
sinws s “nt—s
n—

> Passage to the limit as s — 0 gives @ = 0, and so H(s) = b. Thus,

. o0 2
SN 7S N
= CH 1 - 7 .
S n

n=1

> Passing again to the limit as s — 0 gives ¢ = T, i.e.

sinws:ﬂ'sH 1——2 .
n

n=1



Euler’s gamma function

» The Euler gamma function I'(s) is defined by the equation

L se™’ ﬁ (1 + 5) e/
T'(s) n
n=1
where v is Euler’s constant.

» It follows from the definition that I'~!(s) is an entire function of order
at most one.

» Moreover, I'(s) is an analytic function in the entire s-plane except for
the points s = 0, —1, —2, ..., where it has simple poles.

Theorem (Euler’s formula)
Forevery s € C\ {—n: n € N}, we have
15 1’ s\~
F(s):snl:ll<1+n> (1+2)

In other words, T'(s) is a meromorphic function on C with simple poles at 0
and at the negative integers and with no zeros.



Proof

» From the definition of an infinite product and from the definition of the
function I'(s), we obtain
L. s lim e (Fatti—logm) iy |m| (1 + E) e
F(S) m— 00 m—»00 " n
n—=
s s

_ ; —s 2
=s Jim = TL(1+ )

n=1

Il

[
RS
—
+
S|
N———

4
—
P
+

| ©
~—

which is what we had to prove. O



Properties of Gamma function

Corollary
Forevery s € C\ {—n: n € N}, we have

T (n—=1!-n
Proof. F(S)_”liglos(ﬁ”)w---(ﬂrn—l)'

» From the previous theorem we have

. 2 % ’ (nfxl)*
= G (1)
B 1-2-...-(n=1)n°
nsoos-(s+1)-...-(s+n—1)
as desired.
Corollary

We also have T'(1) =T'(2) = 1.



Properties of Gamma function
Theorem (Functional equation)
» We haveT'(s+ 1) = sI'(s) foralls € C\ {—n:n € N},

» In particular, T'(n+ 1) = n! foralln € N, and res,—_,,I'(s) =

Proof.
» We have
m s+1 s+1 —1
D(s+1) _ H ) (1+ =)
I'(s) +1maoo - ) (1+2)” !
“ n—|—1 n+s
7s+lmhﬁn<}o]:[ nt+s+1

S tim (m—i—l)(s—i—l):
s+ 1msoo m+1+s

This completes the proof.

Corollary (Duplication formula)

T2s)0(1/2) =220 (s)T (s +1/2) forall scC\ (-

—1)"
m!

N).



Properties of Gamma function

Theorem (Reflection formula)

sin s 1
- Il C.
T Te(i—y Jordl se

Proof.
» We know that

sin7rs ﬁ ( )

n=1

» On the other hand, we have

s - (1)

> But we also know that T'(1 — s) = —sT'(—s), and the result follows.

Corollary
As a corollary we obtain that T'(1/2) = /7.



Integral representation of the gamma function

Theorem (Integral representation)
Suppose that Re(s) > 0. Then

I‘(s):/ e~ dr.
Proof. ’
» We know that

S

. nl-n
I‘(S):nlirgos(s+l)(s+2)-~-(s—|—n)'

» We have to establish two things. Firstly, we will show that

n!-n’

n N .
/0 (17;) £ ldt:s(s+1)(s+2)-...~(s+n) for all

» Secondly, we will show that

n t n o
lim (1 — —) r‘“dt:/ e 't dr,

which will complete the proof.

HGZJ,_



Proof

» Indeed, when s > 0 the above integral converges and we have

n 1
t n
/ (1 — 7) £ ldr = nS/ (1 —u)"w~'du
0 n 0

K
1 1

_nvn(n )/ (1 u)n—2u.v+1du
s(s+1) Jy

—1)-...-1 !
:ns n(n ) / us-‘rn—ldu

ss+1)-...-(s+n—=1) Jy
n!-n’

s(s+1)(s+2)-...-(s+n)

» Thus, it suffices to prove that

n

" o
lim (1 - —) rlar :/ e 't
n—oo Jq n 0



Proof

To this end, we consider the functions

() = {(1 —t/ny'r"! if0<t<n,

0 ift > n.
Each of these functions is in L' ([0, 00)) and satisfies the inequality
If(t)] <e "', where o = Re(s).

The last inequality is easily verified by taking logarithms and noting

t
nlog(l——):_;_f_i_...<_t.
n

Furthermore,

t n

lim f,(f) = £~ lim (1 - 7) =Pl
n—o00 n—o00 n

Since the function e ~/#7~! is in L!([0, 00)), the dominated convergence

theorem yields

oo

lim fu(@)dt = / lim f,(¢)dt = / e ' ar,
0 n— o0 0

n—oo 0

which completes the proof of the lemma. O



Stirling’s formula

Theorem (Stirling’s formula. Exercise)
Suppose that s € mathbbC such that | arg s| < m. Then

logT'(s) = (s — 1/2)10gs—s—i—log\/ZTr—&—/o<> Zf(—j)sdu.
0

Here log s denotes the principal branch of the logarithm and v (u) = {u} — 1/2.

Corollary (Exercise)
Suppose that 0 < § < m and |args| < w — 4. Then

log'(s) = (s — 1/2) log s — s 4 log V27 4+ O (\srl)

I'(s)
T(s)

uniformly as |s| — oo, and =logs+ O (|s|~"), where the implied constants

depending at most on 6.

Corollary (Exercise)
Suppose that « < o < B and |t| > 1. Then

[T (0 + if)| = V2r|e|” "2 exp(—nlr]/2) (1 + 0(|t|7l))7

where the implied constant depending at most on o and (3.



Riemann zeta-function

Definition (Riemann zeta-function)

The Riemann zeta-function ((s) is defined for all complex numbers
s = o + it such that 0 > 1 by

=

n=1

» By the absolute convergence all complex numbers s = ¢ + it such that
o > 1 we also have the Euler product formula

peP

» The Euler product formula enables us to see that {(s) # 0 in the
half-plane o > 1. Indeed, for o > 1 we have

1
o 11

peP

Thus |¢(s)] > =L > 0.

oo

1 1 > dt o
< 1+— ) < — <1 — = .
—g( +pa> —Zno - +[ 1o 0-_1

1
1-=
P

n=1




Remarks

Euler’s summation formula
Iff € C'([a,b]), and 3 (x) = {x} — 1/2 for x € R, then by summation by parts we
obtain the following identity
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> By the summation by parts formula we can derive

> Letx > 1 be areal number and s = o + it with o > 1. By the Euler summation
formula with a = 1,5 = x and f(x) = x~°, we can write
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» Taking x — oo we obtain
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> Since [¢(x)| < 31, the integral converges for o > 0 and is uniformly convergent
in any finite region to the right of the line o = 0.

» This implies that it defines an analytic function in the half-plane ¢ > 0, and
therefore (*) extends ¢ to a meromorphic function in this half-plane, which is
analytic except for a simple pole at s = 1 with residue 1.



The Theta function
» Replacing x by mn’x in the integral defining I'(s/2) gives

7827 (%) nt = / X/l gy forall o > 0.
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» The purpose is to sum both sides of this equation. To this end, we
define the following two Theta functions. For all x > 0, we set

w(x) = Ze‘”z" and 0(x) =2w(x)+1= Ze‘”"z".

n=1 neZ

» Then g(1) = e~ satisfies Jr &(t)dt = 1, and its Fourier transform is

2w =e ™.

» For a Schwartz function f, by the Poisson summation formula, we have

Znezﬂn) = > nezf(n), hence

0(x) = g(van) =x"'20(x"") forall x>0.
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The Theta function

» Summing this equation over n € Z, and interchanging the sum and
integral, we obtain for all o > 1 that

/2T (%) ¢(s) = /OO X271 w(x)dx,
0

since the sum and integral converge absolutely in the half-plane o > 1.
> Splitting the integral [~ = fol + f; and changing the variables
x — 1/x in the first integral yields
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> Using 6(x~") = x'/20(x) we may write
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and consequently we obtain
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whenever o > 1.




Functional equation

Theorem
Let
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where 0 is the Theta function
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» Then the function Z(s) can be extended analytically in the whole
complex plane to a meromorphic function having simple poles at s = 0
and s = 1, and satisfies the functional equation =(s) = Z(1 — s).

» Thus the Riemann zeta-function can be extended analytically in the
whole complex plane to a meromorphic function having a simple pole
at s = 1 with residue 1. Furthermore, for all s € C\{1}, we have

¢(s) = 27 ' sin (%S) T(1—5)c(1—s).



Proof

» For ¢ > 1 we have
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» Since w(x) = O(e™™) as x — oo, we infer that the integral is
absolutely convergent for all s € C whereas the left-hand side is a
meromorphic function on o > 0. This implies that

(1) The identity (*) is valid for all ¢ > 0.

(ii) The function Z(s) can be defined by this identity as a meromorphic
function on C with simple poles at s = 0 and s = 1.

(iii) Since the right-hand side of (*) is invariant under the substitution
s 1 —s, we obtain Z(s) = Z(1 — s).

(iv) The function s — &(s) := s(s — 1)E(s) is entire on C. Indeed, if ¢ > 0,
the factor s — 1 counters the pole at s = 1, and the result on all C follows
from the functional equation.

» It remains to show that the functional equation can be written as

¢(s) = 2°7* " 'sin (%) (1 —$)¢(1 —s).



Proof

> Since Z(s) = E(1 — s), we have
T(s/2)C(s) = m/?E(s) = 7°/22(1 — 5) = 7~V (12—s) C(1—s).

» Multiplying both sides by 7—1/225~1T" (
formula, asserting that T'(s) = 7~ 1/22°~

) and using the duplication
(s/2)T ((s+1)/2) we see

rec) = o (50T (45 ) ct -

» Now the reflection formula s“;’” = F(s)I‘l(l = implies that
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and the result follows from the identity
s 71'
s =2sin () sin (5(1+9)).
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The proof is complete. O



Remarks
» ((s) has simple zeros at s = —2, —4, —6, —8, . . .. Indeed, since the
integral in (*) is absolutely convergent for all s € C and since w(x) > 0
for all x € R, we have
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for all n € Z . The result follows from the fact that I'(s/2) has simple
poles at s = —2n.

» These zeros are the only ones lying in the region ¢ < 0. They are called
trivial zeros of the Riemann zeta-function.
» Forall0 < o < 1, we have ((0) # 0. Indeed, for all o > 0 we see

(o)== [ 2
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we infer that, for all 0 < o < 1, we get

o > dx
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which implies that {(0) < 1 +o/(c — 1) forall0 < o < 1.
> Hence (o) < 0forall 1 < o < 1, and the functional equation implies
the asserted result.
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