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Functional equation
Theorem
Recall that Ξ(s) = π−s/2Γ(s/2)ζ(s) can be extended analytically in the whole
complex plane to a meromorphic function having simple poles at s = 0 and s = 1,
and satisfies the functional equation Ξ(s) = Ξ(1 − s). Let

ξ(s) = s(s − 1)π−s/2Γ(s/2)ζ(s)

= 1 +
s(s − 1)

2

∫ ∞

1
(θ(x)− 1)

(
xs/2 + x(1−s)/2

) dx
x
,

where θ is the Theta function

θ(x) =
∑
n∈Z

e−πn2x.

▶ Then the function ξ(s) can be extended analytically in the whole complex plane
to an entire function that satisfies the functional equation ξ(s) = ξ(1 − s).

▶ Thus the Riemann zeta-function can be extended analytically in the whole
complex plane to a meromorphic function having a simple pole at s = 1 with
residue 1. Furthermore, for all s ∈ C\{1}, we have

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1 − s)ζ(1 − s).



Order of ξ
Lemma
The function ξ(s) is an entire function of order 1. Furthermore,

lim sup
|s|→∞

log |ξ(s)|
|s| log |s|

=
1
2
.

Proof.
▶ Since ξ(s) = ξ(1 − s), it suffices to bound |ξ(s)| in the half-plane

Re(s) ≥ 1/2.
▶ We can estimate ξ(s) by invoking Stirling’s formula, and elementary

upper bounds for ζ(s). When Re(s) > 1, we will use the identity

ζ(s) =
s

s − 1
− s
∫ ∞

1

{x}
xs+1 dx.

▶ However, since the last integral represents a holomorphic function in
Re(s) > 0, the identity holds in this larger domain.

▶ In particular, we have

|(s − 1)ζ(s)| = O(|s|2) whenever Re(s) ≥ 1/2.



Proof
▶ Moreover, since log |Γ(s)| ≤ | log Γ(s)|, Stirling’s formula yields

log |Γ(s)| ≤ |s| log |s|+ O(|s|) whenever Re(s) ≥ 1/2.

▶ Combining the last two estimates, since
ξ(s) = s(s − 1)π−s/2Γ(s/2)ζ(s), we obtain

log |ξ(s)| ≤ 1
2
|s| log |s|+ O(|s|) whenever Re(s) ≥ 1/2.

which establishes the first claim of the lemma.
▶ For the second claim, we note that

log |Γ(|s|)| = log Γ(|s|) = |s| log |s|+ O(|s|),

whence

log ξ(|s|) = 1
2
|s| log |s|+ O(|s|) as |s| → ∞.

This completes the proof of the lemma.



Zeros of function ξ
Theorem
The function ξ(s) has infinitely many zeros in the strip 0 ≤ Re(s) ≤ 1 and no zeros
outside that strip. It can be written as

ξ(s) = eBs
∏
ρ

(
1 − s

ρ

)
es/ρ, (*)

where ρ runs through the zeros of ξ(s) counted according to their multiplicities and

B = 1 +
γ

2
− log(2

√
π).

Proof.
▶ By the previous lemma, we know that ξ(s) has order 1.

▶ Noting that ξ(0) = 1, and using Hadamard’s theorem we obtain (*) for some B.

▶ If ξ(s) had only a finite number of zeros, (*) would imply the estimate
log |ξ(s)| = O(|s|), which contradicts the fact that lim sup|s|→∞

log |ξ(s)|
|s| log |s| = 1

2 .

▶ For Re s > 1, the zeta function ζ(s), and, consequently, ξ(s), have no zeros in
this range. By using the equation ξ(s) = ξ(1 − s) it follows that ξ(s) ̸= 0 for
Re s < 0. Since 1 = ξ(0) = ξ(1) ̸= 0, the zeros of ξ(s) lie in the strip
0 ≤ Re(s) ≤ 1.

▶ Show that B = 1 + γ
2 − log(2

√
π).



Remarks

▶ The zeta function ζ(s) has simple zeros at s = −2,−4,−6,−8, . . ..
These zeros are called trivial zeros.

▶ For Re s > 1, the zeta function ζ(s) has no zeros.
▶ In the critical strip 0 ≤ Re s ≤ 1 the zeros of

ξ(s) = s(s − 1)π−s/2Γ(s/2)ζ(s),

are precisely the zeros of ζ(s). These zeros are called nontrivial zeros.
▶ We also know that ζ(σ) ̸= 0 whenever 0 < σ < 1.
▶ In addition to the trivial zeros, the zeta function has infinitely many

nontrivial zeros lying in the critical strip 0 ≤ Re s ≤ 1.
▶ The nontrivial zeros of the zeta function are distributed symmetrically

with respect to the lines Re s = 1/2 and Im s = 0, which follows from
the functional equation

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1 − s)ζ(1 − s).



Approximate functional equation

▶ The functional equation is very important, but also may be insufficient
in some applications for it does not express ζ(s) explicitly.

▶ The following tool will be useful to get some estimates of ζ(s) in the
critical strip, especially when σ is close to 1.

Theorem (Exercise)
We have uniformly for x ⩾ 1 and s ∈ C\{1} such that σ > 0, we have

ζ(s) =
∑
n⩽x

1
ns +

x1−s

s − 1
+ R0(s; x)

with

R0(s; x) =
ψ(x)

xs − s
∫ ∞

x

ψ(u)
us+1 du,

and hence

|R0(s; x)| ⩽ |s|
σxσ

.



Expansion of logarithmic derivative of ζ
Proposition
Let s = σ+ it with −1 ⩽ σ ⩽ 2 and t not equal to an ordinate of a zero of
ζ(s). Set τ = |t|+ 3. Then we have

−ζ
′(s)
ζ(s)

=
1

s − 1
−

∑
ρ

|t−Imρ|⩽1

1
s − ρ

+ O(log τ).

Proof.
▶ Recall that ξ(s) = s(s − 1)π−s/2Γ(s/2)ζ(s).
▶ The logarithmic differentiation provides

ξ′(s)
ξ(s)

= b +
∑
ρ

(
1

s − ρ
+

1
ρ

)
,

where the summation runs through all zeros ρ = β + iγ of ξ(s), which
are exactly the non-trivial zeros of ζ(s).

▶ Moreover, the above sum is absolutely convergent, since∑
ρ

|ρ|−2 <∞.



Proof
▶ Now using the definition of s(s − 1)π−s/2Γ(s/2)ζ(s) gives

ξ′(s)
ξ(s)

=
1
s
+

1
s − 1

− log π

2
+
ζ ′(s)
ζ(s)

+
1
2
Γ′(s/2)
Γ(s/2)

.

▶ By logarithmic differentiation of Γ(s), we obtain

−Γ′(s)
Γ(s)

=
1
s
+ γ +

∞∑
n=1

(
1

n + s
− 1

n

)
.

▶ Therefore, we may write

ζ ′(s)
ζ(s)

= − 1
s − 1

+
log π

2
+
γ

2
+

∞∑
n=1

(
1

2n + s
− 1

2n

)
+b+

∑
ρ

(
1

s − ρ
+

1
ρ

)
.

▶ Note that∑
1≤n≤τ

∣∣∣∣ 1
2n + s

− 1
2n

∣∣∣∣ = O(log τ), and
∑
n≥τ

∣∣∣∣ 1
2n + s

− 1
2n

∣∣∣∣ = O
(
|s|
τ

)
.



Proof
▶ Therefore, we can write that

ζ ′(s)
ζ(s)

= − 1
s − 1

+
∑
ρ

(
1

s − ρ
+

1
ρ

)
+ O(log τ). (*)

▶ Notice that ∣∣∣∣ζ ′(2 + it)
ζ(2 + it)

∣∣∣∣ ≤ ∞∑
n=1

Λ(n)
n2 = O(1).

▶ Applying (*) with s = 2 + it and using the previous bound, we obtain∣∣∣∣∑
ρ

(
1

2 + it − ρ
+

1
ρ

) ∣∣∣∣ = O(log τ).

▶ Adding and subtracting the sum
∑

ρ

( 1
2+it−ρ + 1

ρ

)
from (*), we obtain

ζ ′(s)
ζ(s)

= − 1
s − 1

+
∑
ρ

(
1

s − ρ
− 1

2 + it − ρ

)
+ O(log τ).



Proof
▶ Note that

Re
(

1
2 + it − ρ

)
=

2 − β

(2 − β)2 + (t − γ)2 ≥ 1
4 + 4(t − γ)2 ≥ 0,

Re
(

1
ρ

)
=

β

β2 + γ2 ≥ 0.

▶ Therefore, we obtain∑
ρ

1
4 + 4(t − γ)2 ≤ Re

(∑
ρ

(
1

2 + it − ρ
+

1
ρ

))
= O(log τ).

▶ This immediately implies that∑
|Imρ−t|≤1

1 ≤
∑

|Imρ−t|≤1

2
1 + (t − Imρ)2 = O(log τ).

▶ In other words, the number of zeros ρ in the strip t ≤ Imρ ≤ t + 1 is at
most O(log τ) for any t ≥ 2.



Proof
▶ By the previous observation we see that∑

ρ:|t−γ|⩽1

1
|2 + it − ρ|

= O
( ∑

ρ:|t−γ|⩽1

1
)
= O(log τ). (**)

▶ By the previous observation we also have∑
ρ:|t−γ|>1

∣∣∣∣ 1
2 + it − ρ

+
1
ρ

∣∣∣∣ = O(log τ) (***)

▶ In order to see (***), we split
∑

ρ:|t−γ|>1 =
∑

k∈Z+

∑
ρ:k<|t−γ|≤k+1,

and observe, arguing as in (**), that for each k ∈ Z+ the number of
zeros ρ obeying k < |t − γ| ≤ k + 1 is at most O(log(τ + k)). Now let
k ∈ Z+ and consider the zeros ρ satisfying k < |γ − t| ⩽ k + 1. Since∣∣∣∣ 1

s − ρ
− 1

2 + it − ρ

∣∣∣∣ = 2 − σ

|(s − ρ)(2 + it − ρ)|
⩽

3
|γ − t|2

⩽
3
k2

we infer that the contribution from the sum
∑

ρ:k<|t−γ|≤k+1 is at most
O(k−2 log(τ + k)). Summing over k ∈ Z+ we obtain (***).



Proof

▶ Finally, combining (**) and (***) with

ζ ′(s)
ζ(s)

= − 1
s − 1

+
∑
ρ

(
1

s − ρ
− 1

2 + it − ρ

)
+ O(log τ),

we obtain

−ζ
′(s)
ζ(s)

=
1

s − 1
−

∑
ρ

|t−Imρ|⩽1

1
s − ρ

+ O(log τ),

as desired.

▶ From the proof of the previous proposition, we obtain the following
important result.

Corollary
For every real number T ≥ 2 the number of nontrivial zeros ρ of the zeta
function ζ satisfying T ≤ Imρ ≤ T + 1 is at most O(log T).



Some quantitative bounds
Corollary
For every real number T ⩾ 2, there exists T ′ ∈ [T,T + 1] such that,
uniformly for −1 ⩽ σ ⩽ 2, we have∣∣∣∣ζ ′(σ + iT ′)

ζ(σ + iT ′)

∣∣∣∣ = O(log2 T).

Proof.
▶ We subdivide [T,T + 1] into O(log T) equal parts of length c/ log T ,

where c > 0 is chosen so that the number of parts exceeds the number
of zeros.

▶ By the Dirichlet pigeonhole principle, we deduce that there is a part
that contains no zeros. Hence for T ′ lying in this part, we must have
|T ′ − γ| ≥ c′/ log T for some c′ > 0.

▶ We infer that each summand in the previous proposition is O(log T)
and since there are O(log T) summands by the previous corollary, we
obtain the desired estimate.

This completes the proof.



Zero-free region estimates
Theorem (de la Vallée Poussin)
There exists an absolute constant C > 0 such that ζ(s) has no zero ρ = β + iγ
satisfying

β ≥ 1 − C
log(|γ|+ 2)

. (*)

Proof.
▶ At the point s = 1 the zeta function ζ(s) has a pole, and so there exists c1 ∈ R+

so that ζ(s) has no zeros in the domain |s − 1| ≤ 2c1. Thus if ρ = β + iγ is a
nontrivial zero of ξ(s) then |ρ− 1| ≥ 2c1. If we assume that |γ| ≤ c1, then
1 − β ≥ c1 ≥ c1

4 log 2 ≥ c1
4 log(|γ|+2) implying (*) with C = c1/4. We now fix a

particular zero ρ0 = β0 + iγ0 of ζ(s) such that |γ0| > c1.

▶ Suppose that s = σ + it with σ > 1. Taking real parts we obtain

−Re

(
ζ′(s)
ζ(s)

)
=

∞∑
n=1

Λ(n)n−σ cos(t log n).

▶ Since 3 + 4 cos θ + cos 2θ = 2(1 + cos θ)2 ≥ 0 for any θ ∈ R, we have

−3
ζ′(σ)

ζ(σ)
− 4Re

(
ζ′(σ + it)
ζ(σ + it)

)
− Re

(
ζ′(σ + 2it)
ζ(σ + 2it)

)
≥ 0. (**)



Proof
▶ Since ζ(s) has a pole of residue 1 at s = 1, we have

−ζ
′(σ)

ζ(σ)
=

1
σ − 1

+ O(1).

▶ We consider s = σ + it with t = γ0. Since |γ0| ≥ c1 > 0, we have

−Re

(
ζ′ (σ + iγ0)

ζ (σ + iγ0)

)
≤ −Re

∑
|γ−γ0|≤1

1
(σ − β) + i (γ0 − γ)

+ c2 log (|γ0|+ 2)

≤ −1
(σ − β0)

+ c2 log (|γ0|+ 2) ,

by proceeding as in the previous proposition. Similarly, we have

−Re

(
ζ′ (σ + 2iγ0)

ζ (σ + 2iγ0)

)
≤ c3 log (|γ0|+ 2) .

▶ Inserting these three estimates into (**), we deduce that for σ close to 1,

4 (σ − β0)
−1 − 3(σ − 1)−1 ≤ c4 log (|γ0|+ 2)

▶ Choosing σ = 1 + 1
2c4 log(|γ0|+2) , we obtain

β0 ≤ 1 − 1
14c4 log (|γ0|+ 2)

,

which establishes (*) when |γ0| ≥ c1.



Important estimates

▶ Consider the following function

h(x) =


1 if x ∈ (1,∞),
1
2 if x = 1,
0 if x ∈ (0, 1).

Lemma
Let κ,T,T ′ ∈ R+ be given.
▶ If x ̸= 1, then∣∣∣∣h(x)− 1

2πi

∫ κ+iT

κ−iT′
xs ds

s

∣∣∣∣ ≤ xκ

2π| log x|

(
1
T
+

1
T ′

)
.

▶ If x = 1, then ∣∣∣∣h(1)− 1
2πi

∫ κ+iT

κ−iT

ds
s

∣∣∣∣ ≤ κ

T + κ
.



Proof
▶ Consider first the case when x > 1. Let k be a sufficiently large integer

and let Rk denote the rectangle with vertices κ− iT ′, κ+ iT ,
κ− k + iT, κ− k − iT ′.

▶ Since 0 belongs to the interior of Rk. By the Cauchy theorem, we may
write

1
2πi

∫
Rk

xs ds
s

= 1 = h(x).

▶ Now we have the following upper bounds∣∣∣∣∣
∫ κ−k+iT

κ+iT
xss−1ds

∣∣∣∣∣ ≤
∫ κ

κ−k

xudu
(u2 + T2)1/2 ≤ xκ

T| log x|
,∣∣∣∣∣

∫ κ−iT′

κ−k−iT′
xss−1ds

∣∣∣∣∣ ≤
∫ κ

κ−k

xudu
(u2 + (T ′)2)1/2 ≤ xκ

T ′| log x|
,∣∣∣∣∣

∫ κ−k−iT′

κ−k+iT
xss−1ds

∣∣∣∣∣ ≤ xκ−k

k − κ
(T + T ′) .

▶ We deduce the stated result by letting k tend to infinity.



Proof

▶ The case 0 < x < 1 can be dealt with in a symmetric way, applying the
same argument with k replaced by −k. We omit the details.

▶ When x = 1, we simply note that

1
2πi

∫ κ+iT

κ−iT
s−1ds =

1
2π

(arg(κ+ iT)−arg(κ− iT)) =
1
π
arctan(T/κ).

▶ The stated upper bound is now immediate from the following bounds,
valid for all y > 0,

0 ≤ π

2
− arctan y =

∫ ∞

y

dt
1 + t2 ≤ 2

1 + y

This concludes the proof of the lemma.



Perron truncated formula
▶ Let

F(s) :=
∞∑

n=1

ann−s,

be a Dirichlet series with abscissa of convergence σc and abscissa of
absolute convergence σa.

▶ Its truncated variant is denoted by

F≤x(s) :=
∑
n∈[x]

ann−s, for x ∈ R+.

Theorem (First effective Perron formula)
For κ > max {0, σa}, T ≥ 1 and x ≥ 1, we have

F≤x(s) =
1

2πi

∫ κ+iT

κ−iT
F(s)xs ds

s
+ O

(
xκ

∞∑
n=1

|an|
nκ(1 + T| log(x/n)|)

)
.



Proof
▶ It suffices to show that, for any fixed κ > 0, and uniformly for

y > 0,T > 0, we have that∣∣∣∣h(y)− 1
2πi

∫ κ+iT

κ−iT
yss−1ds

∣∣∣∣ = O
(
yκ/(1 + T| log y|)

)
. (*)

▶ Indeed, applying this estimate with y = x/n and summing over n ∈ Z+

(after multiplication by an ) we obtain precisely the stated formula.
▶ When T| log y| > 1, the estimate (*) follows from the first inequality of

the previous lemma. Otherwise, we can write∫ κ+iT

κ−iT
yss−1ds = yκ

∫ κ+iT

κ−iT
s−1ds + yκ

∫ κ+iT

κ−iT

(
yit − 1

)
s−1ds.

▶ The second integral is

O
(∫ T

−T
|(t log y)s−1|dt

)
= O(T| log y|) = O(1),

and consequently, by the second inequality of the previous lemma, we
see that the left-hand side of (*) is O(yκ). This concludes the proof.



Perron truncated formula
Theorem (Second effective Perron formula)
Let F(s) :=

∑∞
n=1 ann−s be a Dirichlet series with finite abscissa of absolute

convergence σa.

(i) Suppose that there exists some real number α ≥ 0 such that

∞∑
n=1

|an| n−θ = O
(
(θ − σa)

−α ) for θ > σa.

(ii) Assume that that B is a non-decreasing function satisfying

|an| ≤ B(n) for all n ∈ Z+.

Then for x ≥ 2,T ≥ 2, σ ≤ σa, and κ := σa − σ + 1/ log x, we have

∑
n≤x

an

ns =
1

2πi

∫ κ+iT

κ−iT
F(s + w)xw dw

w

+ O
(

xσa−σ (log x)α

T
+

B(2x)
xσ

(
1 +

x log x
T

))
.



Proof
▶ Apply formula (*) to the series

∑∞
n=1 bnn−w with bn := ann−s.

▶ The contribution of integers n ∈ Z+ which do not belong to
[ 1

2 x, 2x
]

is

∑
n ̸∈[x/2,2x]

|xκ||an|
nκ(1 + T| log(x/n)|)

= O
(

xκT−1
∞∑

n=1

|an| n−κ−σ

)
= O

(
xσa−σT−1(log x)α

)
.

▶ When 1
2 x ≤ n ≤ 2x, using inequality log y ≥ 1 − 1

y for y ∈ R+ we have

| log(x/n)| ≥ |x−n|
2x . This leads to the following estimate

x−σ
∑

x/2≤n≤2x

|an|
1 + T| log(x/n)|

= O
(

B(2x)
xσ

∑
x/2≤n≤2x

min

{
1,

x
T|x − n|

})
.

▶ Splitting
∑

x/2≤n≤2x =
∑

x/2≤n≤x−1 +
∑

x−1<n<x+1 +
∑

x+1≤n≤2x we
obtain

O
(

B(2x)
xσ

∑
x/2≤n≤2x

min

{
1,

x
T|x − n|

})
= O

(
B(2x)

xσ

(
1 +

x log x
T

))
.

▶ This completes the proof.



Landau’s explicit formula for ψ(x).
Theorem (Landau)
For any 2 ≤ T ≤ x, we have

ψ(x) = x −
∑

|Imρ|⩽T

xρ

ρ
− log 2π + O

(
x(log x)2

T

)
.

Proof.
▶ We may suppose that x /∈ Z.
▶ For every real number T ⩾ 2, there exists T ′ ∈ [T,T + 1] such that,

uniformly for −1 ⩽ σ ⩽ 2, we have∣∣∣∣ζ ′(σ + iT ′)

ζ(σ + iT ′)

∣∣∣∣ = O(log2 T).

▶ Let T ′ be the number supplied by the above item. Let R be the
rectangle with vertices

κ− iT ′, κ+ iT ′, −1/2 + iT ′, and − 1/2 − iT ′.



Proof
▶ We know that

−ζ
′(s)
ζ(s)

=
1

s − 1
+ B −

∞∑
n=1

(
1

2n + s
− 1

2n

)
−
∑
ρ

(
1

s − ρ
+

1
ρ

)
.

▶ This implies that −ζ ′(s)/ζ(s) has simple poles at s = −2k for k ∈ Z+

with residue −1, and the residue at s = 1, which is equal to 1.
▶ Therefore, by the residue theorem we obtain

1
2πi

∫
R
−ζ

′(s)
ζ(s)

xs

s
ds = x −

∑
|γ|⩽T′

xρ

ρ
− ζ ′(0)
ζ(0)

,

since

res0

(
− ζ ′(s)
ζ(s)

xs

s

)
= −ζ

′(0)
ζ(0)

, and res1

(
− ζ ′(s)
ζ(s)

xs

s

)
= x,

and resρ

(
− ζ ′(s)
ζ(s)

xs

s

)
=

xρ

ρ
.

▶ It can be shown that ζ ′(0)/ζ(0) = log 2π.



Proof

▶ Note that ψ(x) =
∑

n≤x Λ(n) =
∑

n≤x
Λ(n)

ns with s = 0. We know that∣∣∣∣− ζ ′(1 + σ + it)
ζ(1 + σ + it)

∣∣∣∣ = −ζ
′(1 + σ)

ζ(1 + σ)
<

1
σ

for any σ > 0.
▶ Using the second Perron formula with σa = α = 1, σ = 0 = Res,
κ = 1 + 1/ log x and an = Λ(n) and B(n) = log n to obtain

ψ(x) =x −
∑

|γ|⩽T′

xρ

ρ
− log 2π −

2∑
j=1

IHj − IV

+ O
(

x(log x)2

T ′ + log x
)
.

where IHj denotes the integrals taken over the two horizontal sides and
IV is the integral taken over the vertical side.



Proof
▶ Since T ′ ≃ T , we obtain

IHj = O
(∫ κ

−1/2

∣∣∣∣−ζ ′(σ ± iT ′)

ζ(σ ± iT ′)

∣∣∣∣ xσ

|σ ± iT ′|
dσ
)

= O
(
(log T)2

∫ κ

−1/2

xσ

|σ ± iT ′|
dσ
)

= O
(
(log T)2

T

∫ κ

−1/2
xσdσ

)
= O

(
x(log T)2

T

)
, for j ∈ [2].

▶ Moreover, we have

IV = O
(∫ T′

−T′

∣∣∣∣−ζ ′(−1/2 + it)
ζ(−1/2 + it)

∣∣∣∣ x−1/2

| − 1/2 + it|
dt
)

= O
(

x−1/2
∫ T′

−T′
log(2 + |t|) dt

| − 1/2 + it|

)
= O(x−1/2(log T)2) = O

(
x(log T)2

T

)
,

since 2 ≤ T ≤ x. This complete the proof.



The prime number theorem (PNT)
Theorem (PNT)
There exists an absolute constant c ∈ (0, 1) such that as x → ∞, one has

ψ(x) = x + O
(
xe−c

√
log x), (*)

π(x) = Li(x) + O
(
xe−c

√
log x), (**)

where

Li(x) :=
∫ x

2

dt
log t

.

Moreover, one has

Li(x) =
x

log x
+ x

N−1∑
k=1

k!
(log x)k+1 + O

(
x

(log x)N+1

)
.

For instance, for x → ∞, the estimate

π(x) =
x

log x
+ O

(
x

(log x)2

)
is useful in many applications.



Proof
▶ For any fixed N ∈ Z+, by repeated integration by parts, we may derive

Li(x) =
x

log x
+ x

N−1∑
k=1

k!
(log x)k+1 + O

(
x

(log x)N+1

)
.

▶ The second part (**) follows from the first part (*) by summation by
parts. Therefore, it suffices to prove the first part (*).

▶ By Landau’s theorem we obtain, for any 2 ≤ T ≤ x, that

|ψ(x)− x| ≤
∑

|Imρ|⩽T

xReρ

|ρ|
+ O

(
x(log x)2

T

)
.

▶ By the zero-free region estimates, there exists an absolute constant
C ∈ R+ such that for every nontrivial zero ρ = β + iγ of ζ(s), we have

Reρ = β ≤ 1 − C
log(|γ|+ 2)

≤ 1 − C
log T

.

▶ Hence, inserting this bound into the previous one, we otain∑
|Imρ|⩽T

xReρ

|ρ|
≤ x1− C

log T (log T)2.

▶ Taking T = e
√
log x, we obtain the desired result and (*) follows.



Riemann hypothesis

Riemann hypothesis (1859)
All non-trivial zeros of ζ(s) are on the critical line Res = 1

2 .

Remark
▶ If the Riemann hypothesis is true, then we would have

ψ(x) = x + O
(√

x(log x)2). (*)

▶ This follows immediately by adapting the argument from the previous
slide with T =

√
x, where the essential input comes from the fact that

all nontrivial zeros ρ of the ζ(s) satisfy Reρ = 1/2.
▶ A striking result is that the asymptotic (*) implies the Riemann

hypothesis.

Exercise
Prove that the Riemann hypothesis is equivalent to the PNT as in (*).



Korobov and Vinogradov’s theorem
Theorem
▶ For all s = σ + it ∈ C such that 1

2 ⩽ σ ⩽ 1 and t ⩾ 3, one has

|ζ(s)| ⩽ AtB(1−σ)3/2
(log t)2/3. (*)

▶ Inequality (*) implies that there exists an absolute constant c0 > 0 such
that ζ(s) has no zero in the region

σ ⩾ 1 − c0

(log |t|)2/3(log log |t|)1/3 and |t| ⩾ 3. (**)

▶ The estimate (**) is essentially the best zero-free region for ζ(s) up to
now, which was independently obtained by Korobov and Vinogradov.

Theorem (PNT with the best error term to date)
There exists an absolute constant c ∈ (0, 1) such that as x → ∞, one has

ψ(x) = x + O
(

x exp
(
−c(log x)3/5(log log x)−1/5

))
,

π(x) = Li(x) + O
(

x exp
(
−c(log x)3/5(log log x)−1/5

))
.



Theorem of Landau

▶ In fact, any order of magnitude of ζ(s) in a certain domain implies a
zero-free region as may be seen in the next result devised by Landau.

Theorem (Landau)
Let θ(t) and ϕ(t) be positive functions such that θ(t) is decreasing, ϕ(t) is
increasing and e−ϕ(t) ⩽ θ(t) ⩽ 1

2 . Assume that ζ(s) = O(eϕ(t)) in the region
σ ⩾ 1 − θ(t) and t ⩾ 2. Then the following assertions hold.

(i) There exists an absolute constant c0 > 0 such that ζ(s) has no zero in
the region

σ ⩾ 1 − c0
θ(2t + 1)
ϕ(2t + 1)

.

(ii) In the region σ ⩾ 1 − (c0/2) θ(2t + 2)ϕ(2t + 2)−1, we have

1
ζ(s)

= O
(
θ(2t + 2)
φ(2t + 2)

)
and

ζ ′(s)
ζ(s)

= O
(
θ(2t + 2)
φ(2t + 2)

)
.



Consequences of the PNT
▶ The PNT enables us to improve on estimates for some functions of

prime numbers by proceeding as follows. Let x ⩾ 2 be a large real
number and f ∈ C2([2, x]). Then one can write∑

p⩽x

f (p) =f (x)π(x)−
∫ x

2
f ′(u) Li(u)du −

∫ x

2
f ′(u)(π(u)− Li(u))du

=

∫ x

2

f (u)
log u

du + f (2) Li(2) + f (x)(π(x)− Li(x))

−
∫ x

2
f ′(u)(π(u)− Li(u))du.

▶ If the integral
∫∞

2 f ′(u)(π(u)− Li(u))du converges, then we obtain∑
p⩽x

f (p) =
∫ x

2

f (u)
log u

du + cf + f (x)(π(x)− Li(x))

+

∫ ∞

x
f ′(u)(π(u)− Li(u))du

with

cf = f (2) Li(2)−
∫ ∞

2
f ′(u)(π(u)− Li(u))du



Improvements in Mertens’ theorems

▶ For instance, with the latest version of the error term in the PNT we
obtain ∑

p⩽x

1
p
= log log x + B + O

(
exp

(
−c1(log x)3/5(log log x)−1/5

))
,

∑
p⩽x

log p
p

= log x − E + O
(
exp

(
−c1(log x)3/5(log log x)−1/5

))
,

∏
p⩽x

(
1 − 1

p

)
=

e−γ

log x
+ O

(
exp

(
−c1(log x)3/5(log log x)−1/5

))
,

for some absolute constant c1 > 0, where

B ≈ 0.261497212 . . .

is the Mertens constant and

E ≈ 1.332582275 . . . .



The Prime Number Theorem for Arithmetic Progressions
▶ Let a, q ∈ Z+ be such that (a, q) = 1. It is customary to define the

function
π(x; q, a) =

∑
p⩽x

p≡a( mod q)

1.

▶ We know limx→∞ π(x; q, a) = ∞ and hence the question of its order of
magnitude arises naturally.

▶ We expect the prime numbers to be well distributed in the φ(q) reduced
residue classes modulo q. Applying naively the methods that we have
already developed to the function

Ψ(x, χ) =
∑
n⩽x

Λ(n)χ(n),

where χ is a non-principal Dirichlet character modulo q and to its
Dirichlet series − L′

L (s, χ), we obtain

π(x; q, a) =
Li(x)
φ(q)

+ Oq

(
xe−c0(q)

√
log x
)

for some constant 0 < c0(q) < 1 depending on q, the constants implied
in the error term depending also on q.

▶ This dependence makes this result useless in practice.



The Prime Number Theorem for Arithmetic Progressions

▶ A great deal of effort has been made to prove some efficient estimates
where the constants do not depend on the modulus.

▶ One of the most important results in the theory is called the
Siegel-Walfisz-Page theorem or Siegel–Walfisz theorem.

Theorem (Siegel–Walfisz)
Let a, q ∈ Z+ be coprime integers.

(i) For all A > 0, there exists c1(A) ∈ R+ not depending on q such that, for all
q ⩽ (log x)A, we have

π(x; q, a) =
Li(x)
φ(q)

+ OA

(
xe−c1(A)

√
log x

)
.

(ii) For all A > 0 and all q ⩾ 1, we have

π(x; q, a) =
Li(x)
φ(q)

+ OA

(
x

(log x)A

)
.



The Prime Number Theorem for Arithmetic Progressions
▶ Obviously, if we define the Chebyshev type functions

θ(x; q, a) =
∑
p⩽x

p≡a( mod q)

log p and ψ(x; q, a) =
∑
n≤x

n≡a( mod q)

Λ(n),

then similar estimates hold for these functions, namely

θ(x; q, a)
ψ(x; q, a)

}
=

x
φ(q)

+ OA

(
xe−c1(A)

√
log x
)
,

and
θ(x; q, a)
Ψ(x; q, a)

}
=

x
φ(q)

+ OA

(
x

(log x)A

)
.

▶ The proof of the Siegel–Walfisz theorem rests on an explicit formula
for ψ(x, χ) similar to that of the PNT theorem, namely

ψ(x, χ) = E0(χ)x −
∑
|γ|⩽T

xρ

ρ
+ O

( x
T
(log qx)2 + x1/4 log x

)
,

where

E0(χ) =

{
1, if χ = χ0,

0, otherwise.



The Prime Number Theorem for Arithmetic Progressions
▶ This in turn implies that

ψ(x; q, a) =
x

φ(q)
+

∑
χ( mod q)

∑
|γ|⩽T

xρ

ρ
+ O

( x
T
(log qx)2 + x1/4 log x

)
.

▶ The other important tool is the knowledge of a zero-free region for the function
L(s, χ). The arguments generalize those of the function ζ(s), except that there
is an unforeseen difficulty in connection with the possible existence, still
unproven, of an exceptional zero β1 ∈ R near the point 1 of a function L(s, χ)
attached to a quadratic Dirichlet character. More precisely, we have the
following result.

Theorem (Zero-free region for L-functions)
Let q ∈ Z+ and τ = |t|+ 3. There exists an absolute constant c0 > 0 such that if χ
is a Dirichlet character modulo q, then the function L(s, χ) has no zero in the region

σ ⩾ 1 − c0

log(qτ)

unless χ is a quadratic character, in which case L(s, χ) has at most one, necessarily
real, zero β1 < 1 in this region. This zero is called exceptional.
▶ At the present time, we do not know much more about this exceptional zero.

Nevertheless, Landau, Page and Siegel provided some very important results,
showing in particular that such a zero occurs at most rarely.



The Prime Number Theorem for Arithmetic Progressions
Theorem
Let q ∈ Z+ and τ = |t|+ 3.

(i) (Landau). There exists an absolute constant c1 > 0 such that the function∏
χ( mod q) L(s, χ) has at most one zero in the region

σ ⩾ 1 − c1

log(qτ)
.

If such a zero β1 exists, then it is necessarily real and associated to a quadratic
character χ1. This character is called the exceptional character.

(ii) (Page). If χ is a Dirichlet character modulo q, then L(σ, χ) ̸= 0 in the region

σ ⩾ 1 − c2

q1/2(log(q + 1))2 ,

where c2 > 0 is an effectively computable absolute constant.

(iii) (Siegel). Let χ be a quadratic Dirichlet character modulo q. For all ε > 0,
there exists a non-effectively computable constant cε > 0 such that

L(1, χ) >
cε
qε
.

This implies that, if χ is a quadratic character modulo q, then L(σ, χ) ̸= 0 in
the region

σ ⩾ 1 − cε
qε
.


