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Functional equation

Theorem

Recall that Z(s) = ©~*/>I'(s/2)((s) can be extended analytically in the whole
complex plane to a meromorphic function having simple poles at s = 0 and s = 1,
and satisfies the functional equation Z(s) = Z(1 — s). Let

E(s) =s(s — 1)717"/2F(s/2)§(s)

_ s(s—=1) [~ B /2 (1—s)/2) ax
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where 0 is the Theta function

0(x) = Z e_ﬁ”zx.

new
» Then the function £(s) can be extended analytically in the whole complex plane
to an entire function that satisfies the functional equation &(s) = £(1 — s).

» Thus the Riemann zeta-function can be extended analytically in the whole
complex plane to a meromorphic function having a simple pole at s = 1 with
residue 1. Furthermore, for all s € C\{1}, we have

s

C(s) =27 'sin (%) I(1 - s)¢(1 — ).



Order of &

Lemma
The function £(s) is an entire function of order 1. Furthermore,
1
Jimsup 225G _ L
|s]— o0 |s|log\s| 2
Proof.
> Since £(s) = £(1 — ), it suffices to bound |£(s)] in the half-plane
Re(s) > 1/2.

» We can estimate £(s) by invoking Stirling’s formula, and elementary
upper bounds for {(s). When Re(s) > 1, we will use the identity

- e [

» However, since the last integral represents a holomorphic function in
Re(s) > 0, the identity holds in this larger domain.

» In particular, we have

|(s — 1)¢(s)| = O(|s|*) whenever Re(s) > 1/2.



Proof

» Moreover, since log [T'(s)| < |logT'(s)|, Stirling’s formula yields
log |T'(s)| < |s|log|s| + O(]s|) whenever Re(s) > 1/2.

» Combining the last two estimates, since
£(s) = s(s — 1)7%/?T(s/2)((s), we obtain

log [£(s)] < %M log |s| + O(|s|) whenever Re(s) > 1/2.

which establishes the first claim of the lemma.
» For the second claim, we note that

log [T'([s[)| = log T'(|s|) = |s|log [s] + O(]s]),
whence
1
log&(ls]) = Sls|log|s| + O(ls]) as |s| = oo.

This completes the proof of the lemma.



Zeros of function &

Theorem
The function £(s) has infinitely many zeros in the strip 0 < Re(s) < 1 and no zeros
outside that strip. It can be written as

&) =e"T] <1 - %) e, )

where p runs through the zeros of £(s) counted according to their multiplicities and

B =1+ 7 —log(2v/).
Proof.
» By the previous lemma, we know that £(s) has order 1.
> Noting that £(0) = 1, and using Hadamard’s theorem we obtain (*) for some B.
» If £(s) had only a finite number of zeros, (*) would imply the estimate

log ()] _ 1
[logls] — 2°

log [£(s)| = O(|s]), which contradicts the fact that lim sup, _, o,

> For Res > 1, the zeta function ((s), and, consequently, £(s), have no zeros in
this range. By using the equation £(s) = £(1 — s) it follows that £(s) # O for
Res < 0. Since 1 = £(0) = &£(1) # 0, the zeros of £(s) lie in the strip
0 <Re(s) < 1.

» Show that B =1+ 2 —log(2/m). O



Remarks

>

>
>

The zeta function ¢(s) has simple zeros at s = —2,—4, —6, -8, .. ..
These zeros are called trivial zeros.

For Res > 1, the zeta function ((s) has no zeros.
In the critical strip 0 < Res < 1 the zeros of

£(s) = s(s — 1)m /D (s/2)¢(s),

are precisely the zeros of ((s). These zeros are called nontrivial zeros.
We also know that {(o) # 0 whenever 0 < o < 1.

In addition to the trivial zeros, the zeta function has infinitely many
nontrivial zeros lying in the critical strip 0 < Res < 1.

The nontrivial zeros of the zeta function are distributed symmetrically
with respect to the lines Re s = 1/2 and Im s = 0, which follows from
the functional equation

C(s) = 27 'sin (%S) T(1—5)C(1—s).



Approximate functional equation

» The functional equation is very important, but also may be insufficient
in some applications for it does not express ¢(s) explicitly.

» The following tool will be useful to get some estimates of ((s) in the
critical strip, especially when o is close to 1.

Theorem (Exercise)
We have uniformly for x > 1 and s € C\{1} such that o > 0, we have

1 xlfs
) = Y0 R
n<x
i o[
X u
Ro(s;x) = e —s/ ustu,
and hence
Rofsix)] < 42



Expansion of logarithmic derivative of ¢

Proposition

Let s = o+ it with —1 < o < 2 and t not equal to an ordinate of a zero of
C(s). Set T = |t| + 3. Then we have

¢Gs) 1 1
5 =51 Xp: s_p+0(1og7').
[t—Imp|<1

Proof.
> Recall that £(s) = s(s — 1)7 /2T (s/2)¢(s).
» The logarithmic differentiation provides

e :“;( )

s—p

where the summation runs through all zeros p = 8 + iy of £(s), which
are exactly the non-trivial zeros of ((s).

» Moreover, the above sum is absolutely convergent, since

> ol < o
p



Proof
> Now using the definition of s(s — 1)7~%/2T(s/2)¢(s) gives

Es) s s—1 2 C(s)  2T(s/2)"

! 1 1 1 "(s)  1T7(s/2
€6) _ 1, 1 _logr ) 1T
» By logarithmic differentiation of I'(s), we obtain

I'(s) 1 > 1 1
T T(s) §+7+; <n+s n>

» Therefore, we may write

¢ (s) 1 logm 7 ~w— 1 1 1 1
C(s) o172 +2+;(2n+s2n>+b+;( Jr,o)'

s—p

> Note that
1 1 1 1 s
- _“l=oq d — | =o(®).
1<n2< 2n+s Zn‘ (log7),  an §2n+s 2n (7’)




Proof

» Therefore, we can write that
¢(s) _ (
IR

» Notice that

)+omyo *)

¢'(2+1ir)
2+lt

<27

» Applying (¥) with s = 2 + it and using the previous bound, we obtain

’Xp: <2+l1t_p + 1) ‘ = 0(log 7).

p

> Adding and subtracting the sum )~ (m + %) from (*), we obtain

¢'(s) 1 1 1
¢(s) :_s—1+zp:<s _2+it—p>+0(10g7-)'

—p



Proof

» Note that

1 B 2-8 1
Re(2+it—p> R e A S T =0
— >

1y B
Re(p>_52+v =0

» Therefore, we obtain

O e O G R D R

» This immediately implies that
1< — =0(l .
> > g - s
[Imp—1|<1 [Imp— t\<1

» In other words, the number of zeros p in the strip # < Imp < ¢+ 1isat
most O(log ) for any t > 2.



Proof

By the previous observation we see that

1
3 m:0( 3 1):0(1og7). (%)

prlt=vI<1 pilt=v|<1
By the previous observation we also have
Z L + L O(log ) (%)
24it—p p

pilt—vy|>1

In order to see (***), we Split 35 o = 3 icr. D phclimny|<kils
and observe, arguing as in (**), that for each k € Z_ the number of
zeros p obeying k < |t — y| < k + 1 is at most O(log(T + k)). Now let
k € Z, and consider the zeros p satisfying k < |y — 7| < k + 1. Since

- = < <5
s—p 24it—p| |(s—p)2+it—p) " |y—1F "k

we infer that the contribution from the sum Zp: k<]t <k+1 is at most
O(k=2log(7 + k)). Summing over k € Z we obtain (***).

1 1 ’_ 2—0 3 3



Proof

» Finally, combining (**) and (***) with
¢'(s) 1 1 1
=— - o(1
C(s) S—1+Zp: s 2ra—p) O™

we obtain

_CC/((SS)) = s—ll - Z ﬁ-i—O(logT),

[t—Tmp|<1
as desired.

» From the proof of the previous proposition, we obtain the following
important result.

Corollary

For every real number T > 2 the number of nontrivial zeros p of the zeta
Sunction ¢ satisfying T <Imp < T + 1 is at most O(log T).



Some quantitative bounds

Corollary

For every real number T > 2, there exists T' € [T, T + 1] such that,
uniformly for —1 < o < 2, we have

(o +iT")

_ 2
o+ i) = O(log™ T).

Proof.

» We subdivide [T, T + 1] into O(log T) equal parts of length ¢/ log T,
where ¢ > 0 is chosen so that the number of parts exceeds the number
of zeros.

> By the Dirichlet pigeonhole principle, we deduce that there is a part
that contains no zeros. Hence for 7’ lying in this part, we must have
|T" —~| > ¢’/ log T for some ¢’ > 0.

» We infer that each summand in the previous proposition is O(log T')
and since there are O(log T') summands by the previous corollary, we
obtain the desired estimate.

This completes the proof. OJ



Zero-free region estimates

Theorem (de la Vallée Poussin)

There exists an absolute constant C > 0 such that {(s) has no zero p = 8 + i~y

satisfying
C

1- .
P2 e+ 2)

()

Proof.

> At the point s = 1 the zeta function (s) has a pole, and so there exists ¢; € Ry
so that ((s) has no zeros in the domain |s — 1| < 2¢;. Thusif p = S+ ivisa
nontrivial zero off( ) then |p — 1] > 2¢. If we assume that || < ¢y, then
1-8>c > 410%2 > W implying (*) with C = ¢; /4. We now fix a
particular zero po = o + iyo of ((s) such that |yo| > ci.

» Suppose that s = o + it with o > 1. Taking real parts we obtain

s _
— An (r1
Re ( ) ) E 7 cos(tlogn).

n=1

» Since 3 + 4cos + cos20 = 2(1 + cos§)* > 0 for any 0 € R, we have

0 e (Sl (20 .
o) R (cwm) R (c<a+2ir>)zo' e




Proof

> Since ((s) has a pole of residue 1 at s = 1, we have

(o) 1

— = O(1).
(o) ~ o100
» We consider s = o + if with = ~y. Since |yo| > ¢1 > 0, we have
C/(0'+i’70)) 1
—Re|>—>——] <—Re - + c2log (|| + 2
(G ) e ER ey (ol +2)

[v—70l<1

1
< ————+alo +2),
S FET AR g (1ol +2)

by proceeding as in the previous proposition. Similarly, we have

—Re (C/ (0 + 2.1.70)

¢ (o + 2in)

> Inserting these three estimates into (**), we deduce that for o close to 1,
4(0—Po)" =3(c—1)7" <clog (lo] +2)

. 1 .
» Choosingo =1+ Sertoa(maTry) Ve obtain

) < e3log (o] +2).

1
<l —
Bo < l4cqlog (J70] + 2)

which establishes (*) when |yo| > ¢i. O



Important estimates

» Consider the following function

ifx € (1,00),
ifx=1,
ifx € (0,1).

h(x) =

O = =

Lemma
Let 5, T, T' € R, be given.
> Ifx # 1, then

h(x)_L/””xsE <
2mi fo i S

> [fx =1, then

K
T+ k'

1 Kk+iT ds
h(l) — =— <
’ M 27ri/ R

wk—iT

x" l_~_
— 27|logx| \T

1

T

).



Proof

> Consider first the case when x > 1. Let k be a sufficiently large integer
and let Ry denote the rectangle with vertices k — iT’, k + iT,
k—k+iT,x —k—iT".

> Since 0 belongs to the interior of R,. By the Cauchy theorem, we may

write . J
— [ »Z 1=,
27 Jr, S

» Now we have the following upper bounds

k—k+iT
/ x's~lds
Kk+iT

k—iT’
/ s~ ds
k—k—iT’

< /“ x“du < X
= ok @ +T%)V2 7 Tllogx|’

< /“ x“du < xP
T Sk (@ (T2 7 T log x|’
—k—iT’ ik
/ s~ lds| < (T+T).
k—k-+iT k—k

» We deduce the stated result by letting k tend to infinity.



Proof

» The case 0 < x < 1 can be dealt with in a symmetric way, applying the
same argument with k replaced by —k. We omit the details.

» When x = 1, we simply note that
1 Kk+iT

1 1
i) s ds = g(arg(n—&—iT) —arg(k—iT)) = - arctan(T/k).

» The stated upper bound is now immediate from the following bounds,

valid for all y > 0,
" /°° dt < 2
— arctany = P —
Y y L+ T 14y

0<

e

This concludes the proof of the lemma. OJ



Perron truncated formula

> Let
o0
= an,
n=1

be a Dirichlet series with abscissa of convergence o, and abscissa of
absolute convergence o,.

» Its truncated variant is denoted by

Fei(s) == Z an”®, for xeR,.

nex]

Theorem (First effective Perron formula)
For k > max{0,0,}, T > 1 and x > 1, we have

_L KT : vE |
Fo,(s) = - /K_ZT F(s)x g —l—O( Z (1+T] log(x/n)|)>




Proof

It suffices to show that, for any fixed x > 0, and uniformly for
y > 0,T > 0, we have that

1 k+iT
o [

2mi J it

=0(y*/(1 +T|logy])). (9

Indeed, applying this estimate with y = x/n and summing over n € Z,
(after multiplication by a, ) we obtain precisely the stated formula.

When T|logy| > 1, the estimate (*) follows from the first inequality of
the previous lemma. Otherwise, we can write

Kk+iT Kk+iT Kk+iT )
/ yss_ldSZy”’/ s_lds—l—y”’/ (" —1) s ds.
k—iT k—iT Kk—iT
The second integral is
T
o [ Itr1ogy)s~la) = orliosy) = o0
-7

and consequently, by the second inequality of the previous lemma, we
see that the left-hand side of (*) is O(y*). This concludes the proof. [J



Perron truncated formula
Theorem (Second effective Perron formula)

Let F(s) := Y. 2, a,n~* be a Dirichlet series with finite abscissa of absolute

convergence 0.

(1) Suppose that there exists some real number o > 0 such that
Z | n~? =0((0—0,)"") for 0> o,
n=1

(i1) Assume that that B is a non-decreasing function satisfying
|a,| < B(n) forall ne€Zy.

Then forx > 2,T > 2,0 < 0,4 and k := 0, — 0 + 1/ logx, we have

R 1 k—+iT d
n =— F(s+ w)xw—w
n* 2w J,._ir w

4o (x"“‘" (logx)~ n B(2x) (1 n xlogx)) .

n<x

T x° T



Proof

> Apply formula (*) to the series >~ | b,n™" with b, := a,n"".
» The contribution of integers n € Z which do not belong to [%x, 2x] is

x| |an| ( e —k— )
=0(x"T a,|n="7°
Z n®(1 + T|log(x/n)|) ;l |

né[x/2,2x]

=0(x" 7T ' (logx)).

» When %x < n < 2x, using inequality logy > 1 — )l fory € Ry we have
|log(x/n)| > % This leads to the following estimate

Y e~ S i)

x/2<n<2x x/2<n<2x

> Spliting D _, ncpcae = Dox/a<ncrt T 2onmt<ncrtt T 2oxt1<n<on WE
obtain

o5 2 ) o e ()

x/2<n<2x

» This completes the proof. O



Landau’s explicit formula for ¢(x).

Theorem (Landau)
Forany 2 < T < x, we have

g

P(x) =x— Z xp—log27r+0< T

[Tmp|<T

Proof.

> We may suppose that x ¢ Z.

> For every real number 7 > 2, there exists 7° € [T, T + 1] such that,
uniformly for —1 < o < 2, we have

(o +il")

_ 2
o) | O(log™T).

> Let 7’ be the number supplied by the above item. Let R be the
rectangle with vertices

k—iT', k+il", —1/2+iT’, and —1/2—iT".



Proof
» We know that

ot R n) 2050

» This implies that —(’(s)/((s) has simple poles at s = —2k fork € Z .
with residue —1, and the residue at s = 1, which is equal to 1.

» Therefore, by the residue theorem we obtain

Y ERSOEPNIN ()

i
miJr o C(s) s [yI<T”

since

(- G) =g (-G

and resp<— ) s

» It can be shown that ¢/(0)/¢(0) = log 2.



Proof

> Note that 1(x) = 35, . A(n) =3, -, Am) with s = 0. We know that

_ ¢0+0) 1
T T+ S o

‘cu+a+m
C(14+o+ir)

for any o > 0.
» Using the second Perron formula with 0, = a = 1, 0 = 0 = Res,
k =1+ 1/logxand a, = A(n) and B(n) = log n to obtain

2

Y(x) =x — Z il —log 27w — ZIH/ —Iy

< P =1

x(log x)?
+ 0 ((T’) + logx) .

where I3;, denotes the integrals taken over the two horizontal sides and
Iy is the integral taken over the vertical side.



Proof

» Since T’ ~ T, we obtain
(o +iT")

K xG'
Iy, =
" 0(/1/2 (o £il") UiiT’dU>
— log T)? _ X
(s [, )
1 2 K 1 2
:0(( ogTT) / x"do) zo(x( oeT) ), for je[2].

~1)2 T

» Moreover, we have

T’ X172
L) =0 dt
v </r —1m+ﬁ>
Tl

:OG*@/#%@+W%%Z+M)
=0(x ?(logT)?) = 0<x(logT)2>,

(=124 i)
C(—1/2+ir)

T

since 2 < T < x. This complete the proof.



The prime number theorem (PNT)
Theorem (PNT)

There exists an absolute constant ¢ € (0, 1) such that as x — 0o, one has

Y(x) =x+ O(xefc\/@), *)
7(x) = Li(x) + O(xe_"\/@), (%)
where g
. L 7f
Li(x) := | Togt’

Moreover, one has

N—1
x k! X
Li = 0] .
10 = fogx +¥ 2 o (<1ogx>N+1>

For instance, for x — oo, the estimate

") = gz * O <<1o§x>2>

is useful in many applications.




Proof

For any fixed N € Z_, by repeated integration by parts, we may derive
x = k! X
Li(x) = — — 40— .
i) log x +x; (logx)1 ((10gx}’v+ 1)

The second part (**) follows from the first part (*) by summation by
parts. Therefore, it suffices to prove the first part (¥).
By Landau’s theorem we obtain, for any 2 < T < x, that

s Y o (“g)> |

[tmp|<T o d

By the zero-free region estimates, there exists an absolute constant
C € R, such that for every nontrivial zero p = 3 + i~y of {(s), we have
C C
———<1-—.
log(|y| +2) log T
Hence, inserting this bound into the previous one, we otain

Z al < xlf%(log T)%.
[Tmp|<T ol
Taking T = eV logx we obtain the desired result and (*) follows. ]

Rep=p5<1

Rep




Riemann hypothesis

Riemann hypothesis (1859)

All non-trivial zeros of ((s) are on the critical line Res = 1.

Remark

» If the Riemann hypothesis is true, then we would have

P(x) =x+ 0(vx(logx)?). *)

» This follows immediately by adapting the argument from the previous
slide with T = 4/x, where the essential input comes from the fact that
all nontrivial zeros p of the ((s) satisfy Rep = 1/2.

» A striking result is that the asymptotic (*) implies the Riemann
hypothesis.

Exercise
Prove that the Riemann hypothesis is equivalent to the PNT as in (*).



Korobov and Vinogradov’s theorem

Theorem
» foralls =0 +it € (Csuchthat% <o < landt > 3, one has

1C(s)] < AP (log 1)2/3, ()

» Inequality (*) implies that there exists an absolute constant co > 0 such
that {(s) has no zero in the region
co

- d |t| = 3. ok
oz 17 (oglogiy A @ 1 (%)

» The estimate (**) is essentially the best zero-free region for {(s) up to
now, which was independently obtained by Korobov and Vinogradov.

Theorem (PNT with the best error term to date)
There exists an absolute constant ¢ € (0, 1) such that as x — oo, one has

PY(x)=x+0 (xexp (—c(logx)3/5(loglogx)_l/s)) ,

m(x) = Li(x) + O (xexp (—c(logx)S/S(log logx)_l/5)> .



Theorem of Landau

» In fact, any order of magnitude of {(s) in a certain domain implies a
zero-free region as may be seen in the next result devised by Landau.

Theorem (Landau)

Let 0(t) and ¢(t) be positive functions such that 0(t) is decreasing, ¢(t) is
increasing and e=*") < 0(t) < 1. Assume that ((s) = O(e®")) in the region
o> 1—0(t) and t > 2. Then the following assertions hold.

(i) There exists an absolute constant ¢ > 0 such that ((s) has no zero in
the region

(ii) In the region o > 1 — (c/2) 0(2t + 2)p(2t +2)~!, we have

(0N (02 +2)
c<s>‘0(«:<2r+2>> ) 0<¢<2r+2>>'




Consequences of the PNT

» The PNT enables us to improve on estimates for some functions of
prime numbers by proceeding as follows. Let x > 2 be a large real
number and f € C([2,x]). Then one can write

S F(p) =) () — / () LiCu)du / " () ((u) — L))

2 Y 52 L) 4+ (1) — Lit)
/ £ u))du.
> If the integral [, f'(u)(m(u )— i(u))du converges, then we obtain
> 1t / P g -+16) ) - Lit)
+ / () () — Li())d
with

- " ) () — LiCu))d



Improvements in Mertens’ theorems

» For instance, with the latest version of the error term in the PNT we

obtain
1
Z — =loglogx+B+ 0O (exp <—Cl(10gx)3/5(log 1ng)—1/5)) 7
P<X
1
Z ogp = logx —E+0 (exp <—C1(10gx)3/5(10g logx)—1/5>) ’
psX P
1 -
11 <1 B ) = o+ 0 (exp (~ei(10gx)*(log log 1)~ /%) )
o p log x

for some absolute constant ¢; > 0, where
B~ 0.261497212...
is the Mertens constant and

E =~ 1.332582275 . ...



The Prime Number Theorem for Arithmetic Progressions

>

>

>

>

Leta,q € Z, be such that (a,q) = 1. It is customary to define the
function
m(x; q,a) = Z 1.
PSX
p=a( mod q)
We know lim,_,, 7(x; ¢, a) = oo and hence the question of its order of

magnitude arises naturally.

We expect the prime numbers to be well distributed in the ©(g) reduced
residue classes modulo g. Applying naively the methods that we have
already developed to the function

U(x,x) = A(n)x(n),

where Y is a non-principal Dirichlet character modulo ¢ and to its
Dirichlet series —% (s, x), we obtain

7w(x;q,a) = Li() + 0, (xe_c(’(q)\/@)
v(q)
for some constant 0 < co(q) < 1 depending on ¢, the constants implied
in the error term depending also on gq.
This dependence makes this result useless in practice.



The Prime Number Theorem for Arithmetic Progressions

> A great deal of effort has been made to prove some efficient estimates
where the constants do not depend on the modulus.

» One of the most important results in the theory is called the
Siegel-Walfisz-Page theorem or Siegel-Walfisz theorem.

Theorem (Siegel-Walfisz)

Let a,q € Z be coprime integers.

(i) Forall A > 0, there exists ¢i1(A) € Ry not depending on q such that, for all
g < (logx)*, we have

Ll(x) —c1(A)VTogx
w(x;q,a) = 4 O4 | xe™ ! 1) .
(. 9.9) ©(q) A( )

(ii) Forall A > Oandall g > 1, we have

rlrig.a) = 5% 4o, ( x A) .

w(q) (logx)




The Prime Number Theorem for Arithmetic Progressions
» Obviously, if we define the Chebyshev type functions

O(x;q.a) = > logp and Y(xiga)= > An),

pSXx n<x
p=a( mod q) n=a( mod q)

then similar estimates hold for these functions, namely

0(x; q,a) } d —c1(A)v/Togx
— 0 C1 ogx ,
Y(x; g, a) ©(q) O (xe )

£ )= - ()

» The proof of the Siegel-Walfisz theorem rests on an explicit formula
for ¢ (x, x) similar to that of the PNT theorem, namely

and

U x) = Eoxx— 3 5 10 (i (loggn)” + '/ logx)

where

17 le = X0,
E =
000 { 0, otherwise.



The Prime Number Theorem for Arithmetic Progressions
» This in turn implies that

1/1()6%(]7&1)* + Z Zf+0( (log gx)° +x'/4logx)

x(mod q) [v|<T

» The other important tool is the knowledge of a zero-free region for the function
L(s, x). The arguments generalize those of the function {(s), except that there
is an unforeseen difficulty in connection with the possible existence, still
unproven, of an exceptional zero 81 € R near the point 1 of a function L(s, x)
attached to a quadratic Dirichlet character. More precisely, we have the
following result.

Theorem (Zero-free region for L-functions)
Let g € Z4 and T = |t| + 3. There exists an absolute constant co > 0 such that if x
is a Dirichlet character modulo q, then the function L(s, x) has no zero in the region
-9
log(gr)
unless x is a quadratic character, in which case L(s, x) has at most one, necessarily
real, zero B1 < 1 in this region. This zero is called exceptional.

> At the present time, we do not know much more about this exceptional zero.
Nevertheless, Landau, Page and Siegel provided some very important results,
showing in particular that such a zero occurs at most rarely.



The Prime Number Theorem for Arithmetic Progressions
Theorem
Letq € Z4 and T = |t| 4+ 3.

(1) (Landau). There exists an absolute constant ¢1 > 0 such that the function
L1 ( mod ) LS, X) has at most one zero in the region
C1
log(gT)
If such a zero By exists, then it is necessarily real and associated to a quadratic
character x1. This character is called the exceptional character.

o>1

(i) (Page). If x is a Dirichlet character modulo q, then L(c, x) # 0 in the region
(&)

q'/*(log(g + 1))*’

where c; > 0 is an effectively computable absolute constant.

o>1-—

(iii) (Siegel). Let x be a quadratic Dirichlet character modulo q. For all € > 0,
there exists a non-effectively computable constant c. > 0 such that

Ce

This implies that, if x is a quadratic character modulo q, then L(o, x) # 0 in
the region

c
cx>1-—=.

qE



