8. Lecture 8  PDF

Jensen’s formula

We denote by \(D_{R}=\{z\in\mathbb C: |z|<R\}\) and \(C_{R}=\{z\in\mathbb C: |z|=R\}\) the open disc and circle of radius \(R\in\mathbb R_+\) centered at the origin.

Let \(\Omega\) be an open set that contains the closure of a disc \(D_{R}\) and suppose that \(f\) is holomorphic in \(\Omega\), and \(f(0) \neq 0\), \(f\) vanishes nowhere on the circle \(C_{R}\). If \(z_{1}, \ldots, z_{N}\) denote the zeros of \(f\) inside the disc (counted with multiplicities, i.e. each zero appears in the sequence as many times as its order), then \[\begin{align*} \log |\: f(0)|=\sum_{k=1}^{N} \log \left(\frac{\left|z_{k}\right|}{R}\right) +\frac{1}{2 \pi} \int_{0}^{2 \pi} \log |\:f(R e^{i \theta})| d \theta. \tag{*} \end{align*}\]

Proof. The proof of the theorem consists of several steps.

  • Step 1. First, we observe that if \(f_{1}\) and \(f_{2}\) are two functions satisfying the hypotheses and the conclusion of the theorem, then the product \(f_{1}\: f_{2}\) also satisfies the hypothesis of the theorem and formula (*). This is a simple consequence of the fact that \(\log x y=\log x+\log y\) whenever \(x, y\in\mathbb R_+\), and that the set of zeros of \(f_{1}\: f_{2}\) is the union of the sets of zeros of \(f_{1}\) and \(f_{2}\).

  • Step 2. The function \[g(z)=\frac{f(z)}{\left(z-z_{1}\right) \cdots\left(z-z_{N}\right)}\] initially defined on \(\Omega\setminus\left\{z_{1}, \ldots, z_{N}\right\}\), is bounded near each \(z_{j}\). Therefore each \(z_{j}\) is a removable singularity, and hence we can write \[f(z)=\left(z-z_{1}\right) \cdots\left(z-z_{N}\right) g(z),\] where \(g\) is holomorphic in \(\Omega\) and nowhere vanishing in the closure of \(D_{R}\). By Step 1, it suffices to prove Jensen’s formula for functions like \(g\) that vanish nowhere, and for functions of the form \(z-z_{j}\).

  • Step 3. We first prove (*) for a function \(g\) that vanishes nowhere in the closure of \(D_{R}\). More precisely, we must establish the following identity:

    \[\begin{align*} \log |g(0)|=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log |g(R e^{i \theta})| d \theta. \tag{**} \end{align*}\] In a slightly larger disc, we can write \(g(z)=e^{h(z)}\) where \(h\) is holomorphic in that disc. This is possible since discs are simply connected, and we can define \(h=\log g\). Now \(|g(z)|=|e^{h(z)}|=|e^{\operatorname{Re}(h(z))+i \operatorname{Im}(h(z))}|=e^{\operatorname{Re}(h(z))}\), so that \(\log |g(z)|=\operatorname{Re}(h(z))\). Then the mean value property for holomorphic functions (in our case with \(h=\log g\)) immediately implies the desired formula for its real part, which is precisely (**).

  • Step 4. The last step is to prove the formula for functions of the form \(f(z)=z-w\), where \(w \in D_{R}\). That is, we must show that \[\log |w|=\log \left(\frac{|w|}{R}\right)+\frac{1}{2 \pi} \int_{0}^{2 \pi} \log |R e^{i \theta}-w| d \theta.\]

    Since \(\log (|w| / R)=\log |w|-\log R\) and \(\log|R e^{i \theta}-w|=\log R+\log |e^{i \theta}-w / R|\), it suffices to prove that \[\int_{0}^{2 \pi} \log |e^{i \theta}-a| d \theta=0, \quad \text { whenever } \quad |a|<1.\]

    This in turn is equivalent (after the change of variables \(\theta \mapsto-\theta\) ) to \[\int_{0}^{2 \pi} \log |1-a e^{i \theta}| d \theta=0, \quad \text { whenever } \quad |a|<1.\] To prove this, we use the function \(F(z)=1-a z\), which vanishes nowhere in the closure of the unit disc. As a consequence, there exists a holomorphic function \(G\) in a disc of radius greater than \(1\) such that \(F(z)=\) \(e^{G(z)}\). Then \(|F|=e^{\operatorname{Re}(G)}\), and therefore \(\log |F|=\operatorname{Re}(G)\). Since \(F(0)=1\) we have \(\log |F(0)|=0\), and an application of the mean value property to the real part of holomorphic function \(G\), which is \(\log |F(z)|\) concludes the proof of the theorem.$$\tag*{$\blacksquare$}$$

Growth of a holomorphic function and its number of zeros

  • From Jensen’s formula we can derive an identity linking the growth of a holomorphic function with its number of zeros inside a disc.

  • If \(f\) is a holomorphic function on the closure of a disc \(D_{R}\), we denote by \(\mathfrak{n}_{f}(r)\) the number of zeros of \(f\) (counted with their multiplicities) inside the disc \(D_{r}\), with \(0<r<R\).

  • A simple but useful observation is that \(\mathfrak{n}_{f}(r)\) is a non-decreasing function of \(r\).

Under the assumptions of the previous theorem, we have \[\int_{0}^{R} \mathfrak{n}_f(r) \frac{d r}{r}=\sum_{k=1}^{N} \log \bigg|\frac{R}{z_{k}}\bigg|.\]

Proof.

  • First we have \[\sum_{k=1}^{N} \log \left|\frac{R}{z_{k}}\right|=\sum_{k=1}^{N} \int_{\left|z_{k}\right|}^{R} \frac{d r}{r}.\]

 
 
 
 
$$\tag*{$\blacksquare$}$$

  • If we define the characteristic function \[\eta_{k}(r)= \begin{cases}1 & \text { if } r>\left|z_{k}\right|, \\ 0 & \text { if } r \leq\left|z_{k}\right|, \end{cases}\] then

    \[\sum_{k=1}^{N} \eta_{k}(r)=\mathfrak{n}_f(r).\]

  • The lemma is proved using \[\sum_{k=1}^{N} \int_{\left|z_{k}\right|}^{R} \frac{d r}{r}=\sum_{k=1}^{N} \int_{0}^{R} \eta_{k}(r) \frac{d r}{r}=\int_{0}^{R}\left(\sum_{k=1}^{N} \eta_{k}(r)\right) \frac{d r}{r}=\int_{0}^{R} \mathfrak{n}_f(r) \frac{d r}{r}.\]

This completes the proof of the lemma. $$\tag*{$\blacksquare$}$$

As a corollary of Jensen’s formula and the previous lemma, we obtain \[\int_{0}^{R} \mathfrak{n}_f(r) \frac{d r}{r}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log |\: f(R e^{i \theta})| d \theta-\log |\: f(0)|.\]

Functions of finite order

  • Let \(f\) be an entire function. If there exist \(\rho\in\mathbb R_+\) and constants \(A, B\in\mathbb R_+\) such that \[|\:f(z)| \leq A e^{B|z|^{\rho}} \quad \text { for all } \quad z \in \mathbb{C},\] then we say that \(f\) has an order of growth \(\leq \rho\).

  • We define the order of growth of \(f\) as \[\rho_{f}=\inf \rho,\] where the infimum is taken over all \(\rho>0\) such that \(f\) has an order of growth \(\leq \rho\).

  • For example, the order of growth of the function \(e^{z^{2}}\) is \(2\).

If \(f\) is an entire function that has an order of growth \(\leq \rho\), then:

  • \(\mathfrak{n}_f(r) \leq C r^{\rho}\) for some \(C>0\) and all sufficiently large \(r\).

  • If \(z_{1}, z_{2}, \ldots\) denote the zeros of \(f\), with \(z_{k} \neq 0\), then for all \(s>\rho\) we have

\[\sum_{k=1}^{\infty} \frac{1}{\left|z_{k}\right|^{s}}<\infty.\]

  • It suffices to prove the estimate for \(\mathfrak{n}_f(r)\) when \(f(0) \neq 0\). Indeed, consider \(F(z)=f(z) / z^{l}\), where \(l\) is the order of the zero of \(f\) at the origin. Then \(\mathfrak{n}_{f}(r)\) and \(\mathfrak{n}_{F}(r)\) differ only by a constant, and \(F\) also has an of order of growth \(\leq \rho\).

  • If \(f(0) \neq 0\) we may use formula from the previous corollary, namely \[\int_{0}^{R} \mathfrak{n}_f(x) \frac{d x}{x}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log |\: f(R e^{i \theta})| d \theta-\log|\:f(0)|.\]

  • Choosing \(R=2 r\), this formula implies \[\int_{r}^{2 r} \mathfrak{n}_f(x) \frac{dx}{x} \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} \log |\: f(R e^{i \theta})| d \theta-\log |\: f(0)|.\]

  • On the one hand, since \(\mathfrak{n}_f(r)\) is increasing, we have \[\int_{r}^{2 r} \mathfrak{n}_f(x) \frac{d x}{x} \geq \mathfrak{n}_f(r) \int_{r}^{2 r} \frac{d x}{x}=\mathfrak{n}_f(r)[\log 2 r-\log r]=\mathfrak{n}_f(r) \log 2.\]

  • On the other hand, the growth condition on \(f\) (for all large \(r\)) gives \[\int_{0}^{2 \pi} \log |f(R e^{i \theta})| d \theta \leq \int_{0}^{2 \pi} \log |A e^{B R^{\rho}}| d \theta \leq C^{\prime} r^{\rho}.\]

  • Consequently, \(\mathfrak{n}_f(r) \leq C r^{\rho}\) for an appropriate \(C>0\) and all sufficiently large \(r\).

  • The following estimates prove the second part of the theorem: \[\begin{aligned} \sum_{\left|z_{k}\right| \geq 1}\left|z_{k}\right|^{-s} & =\sum_{j=0}^{\infty}\left(\sum_{2^{j} \leq\left|z_{k}\right|<2^{j+1}}\left|z_{k}\right|^{-s}\right) \\ & \leq \sum_{j=0}^{\infty} 2^{-j s} \mathfrak{n}\left(2^{j+1}\right) \\ & \leq c \sum_{j=0}^{\infty} 2^{-j s} 2^{(j+1) \rho} \\ & \leq c^{\prime} \sum_{j=0}^{\infty}\left(2^{\rho-s}\right)^{j} <\infty \end{aligned}\]

  • The last series converges because \(s>\rho\).

This completes the proof of the theorem.$$\tag*{$\blacksquare$}$$

Infinite products

  • Given a sequence \((a_{n})_{n\in\mathbb Z_+}\subseteq \mathbb C\), we say that the product \[\prod_{n=1}^{\infty}\left(1+a_{n}\right)\] converges if the limit \[\lim _{N \rightarrow \infty} \prod_{n=1}^{N}\left(1+a_{n}\right)\] of the partial products exists.

  • A useful necessary condition that guarantees the existence of a product is contained in the following proposition.

Proposition. If \(\sum_{n\in\mathbb Z_+}\left|a_{n}\right|<\infty\), then the product \[\prod_{n=1}^{\infty}\left(1+a_{n}\right)\] converges. Moreover, the product converges to \(0\) if and only if one of its factors is \(0\).

  • If \(\sum_{n\in\mathbb Z_+}\left|a_{n}\right|\) converges, then for all large \(n\) we must have \(\left|a_{n}\right|<1 / 2\). We may assume, without loss of generality, that this inequality holds for all \(n\in\mathbb Z_+\).

  • Hence, we can define \(\log \left(1+a_{n}\right)\) by the usual power series, and this logarithm satisfies the property that \(1+z=e^{\log (1+z)}\) whenever \(|z|<1\).

  • Hence we may write the partial products as follows: \[\prod_{n=1}^{N}\left(1+a_{n}\right)=\prod_{n=1}^{N} e^{\log \left(1+a_{n}\right)}=e^{B_{N}}\] where \(B_{N}=\sum_{n=1}^{N} b_{n}\) with \(b_{n}=\log \left(1+a_{n}\right)\).

  • By the power series expansion we see that \(|\log (1+z)| \leq 2|z|\), if \(|z|<1 / 2\). Hence \(\left|b_{n}\right| \leq 2\left|a_{n}\right|\), so \(B_{N}\) converges as \(N \rightarrow \infty\) to a complex number, say \(B\).

  • Since the exponential function is continuous, we conclude that \(e^{B_{N}}\) converges to \(e^{B}\) as \(N \rightarrow \infty\), and the first part follows.

  • Observe also that if \(1+a_{n} \neq 0\) for all \(n\in\mathbb Z_+\), then the product converges to a non-zero limit since it is expressed as \(e^{B}\). $$\tag*{$\blacksquare$}$$

Infinite products of holomorphic functions

Proposition 2. Suppose \((F_{n})_{n\in\mathbb Z_+}\) is a sequence of holomorphic functions on the open set \(\Omega\). If there exist constants \(c_{n}>0\) such that \[\sum_{n\in\mathbb Z_+} c_{n}<\infty \quad \text { and } \quad\left|F_{n}(z)-1\right| \leq c_{n} \quad \text { for all } \quad z \in \Omega,\] then:

  • The product \(\prod_{n=1}^{\infty} F_{n}(z)\) converges uniformly in \(\Omega\) to a holomorphic function \(F(z)\).

  • If \(F_{n}(z)\) does not vanish for any \(n\), then \[\frac{F^{\prime}(z)}{F(z)}=\sum_{n=1}^{\infty} \frac{F_{n}^{\prime}(z)}{F_{n}(z)}.\]

  • To prove the first statement, note that for each \(z\) we may argue as in the previous proposition if we write \(F_{n}(z)=1+a_{n}(z)\), with \(\left|a_{n}(z)\right| \leq c_{n}\).

  • Then, we observe that the estimates are actually uniform in \(z\) because the \(c_{n}\) ’s are constants. It follows that the product converges uniformly to a holomorphic function, which we denote by \(F(z)\).

  • To establish the second part of the theorem, suppose that \(K\) is a compact subset of \(\Omega\), and let \[G_{N}(z)=\prod_{n=1}^{N} F_{n}(z).\]

  • We have just proved that \(\lim_{N\to\infty}G_{N} = F\) uniformly in \(\Omega\). Hence, the sequence \((G_{N}^{\prime})_{N\in\mathbb Z_+}\) converges uniformly to \(F^{\prime}\) in \(K\).

  • Since \(G_{N}\) is uniformly bounded from below on \(K\), we conclude that \(\lim_{N\to\infty}G_{N}^{\prime} / G_{N} =F^{\prime} / F\) uniformly on \(K\), and because \(K\) is an arbitrary compact subset of \(\Omega\), the limit holds for every point of \(\Omega\).

  • Moreover, a simple calculation yields \[\frac{G_{N}^{\prime}}{G_{N}}=\sum_{n=1}^{N} \frac{F_{n}^{\prime}}{F_{n}},\] so part (ii) of the proposition is also proved. $$\tag*{$\blacksquare$}$$

Canonical factors

  • For each integer \(k \geq 0\) we define canonical factors by \[E_{0}(z)=1-z \quad \text { and } \quad E_{k}(z)=(1-z) e^{z+z^{2} / 2+\cdots+z^{k} / k}, \quad \text { for } k \geq 1 .\]

    The integer \(k\) is called the degree of the canonical factor.

    If \(|z| \leq 1 / 2\), then \(|E_{k}(z)-1| \leq 2e|z|^{k+1}\).

    Proof.

    • If \(|z| \leq 1 / 2\), then with the logarithm defined in terms of the power series, we have \(1-z=e^{\log (1-z)}\), and therefore \[E_{k}(z)=e^{\log (1-z)+z+z^{2} / 2+\cdots+z^{k} / k}=e^{w}\] where \(w=-\sum_{n=k+1}^{\infty} z^{n} / n\). Observe that since \(|z| \leq 1 / 2\) we have \[|w| \leq|z|^{k+1} \sum_{n=k+1}^{\infty}|z|^{n-k-1} / n \leq|z|^{k+1} \sum_{j=0}^{\infty} 2^{-j} \leq 2|z|^{k+1}.\]

    • In particular, we have \(|w| \leq 1\) and this implies that \[\left|1-E_{k}(z)\right|=\left|1-e^{w}\right| \leq e|w| \leq 2e|z|^{k+1}. \qquad \tag*{$\blacksquare$}\]

     
     
    $$\tag*{$\blacksquare$}$$

Weierstrass infinite products

Given any sequence \((a_{n})_{n\in\mathbb Z_+}\subseteq \mathbb C\) with \(\lim_{n\to \infty}|a_{n}|=\infty\), there exists an entire function \(f\) that vanishes at all \(z=a_{n}\) and nowhere else. Any other such entire function is of the form \(f(z)e^{g(z)}\), where \(g\) is entire.

Proof.

  • Recall that if a holomorphic function \(f\) vanishes at \(z=a\), then the multiplicity of the zero \(a\) is the integer \(m\) so that \[f(z)=(z-a)^{m} g(z),\] where \(g\) is holomorphic and nowhere vanishing in a neighborhood of \(a\).

  • To begin the proof, note first that if \(f_{1}\) and \(f_{2}\) are two entire functions that vanish at all \(z=a_{n}\) and nowhere else, then \(f_{1} / f_{2}\) has removable singularities at all the points \(a_{n}\). Hence \(f_{1} / f_{2}\) is entire and vanishes nowhere, so that there exists an entire function \(g\) with \[f_{1}(z) / f_{2}(z)=e^{g(z)}.\]

  • Therefore \(f_{1}(z)=f_{2}(z) e^{g(z)}\) as desired.

 
 
$$\tag*{$\blacksquare$}$$

  • We have to construct a function that vanishes at all the points of the sequence \((a_{n})_{n\in\mathbb Z_+}\) and nowhere else.

  • Suppose that we are given a zero of order \(m\) at the origin, and that \(a_{1}, a_{2} \ldots\) are all non-zero. Then we define the Weierstrass product by \[f(z)=z^{m} \prod_{n=1}^{\infty} E_{n}\left(z / a_{n}\right).\]

  • We claim that this function has the required properties; that is,

    • \(f\) is entire with a zero of order \(m\) at the origin;

    • \(f\) has zeros at each point of the sequence \((a_{n})_{n\in\mathbb Z_+}\);

    • \(f\) vanishes nowhere else.

  • Fix \(R>0\), and suppose that \(z\) belongs to the disc \(|z|<R\). We shall prove that \(f\) has all the desired properties in this disc, and since \(R\) is arbitrary, this will prove the theorem.

  • We can consider two types of factors in the formula defining \(f\), with the choice depending on whether \(\left|a_{n}\right| \leq 2 R\) or \(\left|a_{n}\right|>2 R\).

  • There are only finitely many terms of the first kind (since \(\lim_{n\to\infty}\left|a_{n}\right| =\infty\)), and we see that the finite product vanishes at all \(z=a_{n}\) with \(\left|a_{n}\right|<R\).

  • If \(\left|a_{n}\right| \geq 2 R\), we have \(\left|z / a_{n}\right| \leq 1 / 2\), hence the previous lemma implies \[\left|E_{n}\left(z / a_{n}\right)-1\right| \leq 2e\left|\frac{z}{a_{n}}\right|^{n+1} \leq \frac{e}{2^{n}}.\]

  • Therefore, the product \[\prod_{\left|a_{n}\right| \geq 2 R} E_{n}\left(z / a_{n}\right)\] defines a holomorphic function when \(|z|<R\), and does not vanish in that disc by the previous propositions.

  • This shows that the function \(f\) has the desired properties, and the proof of Weierstrass’s theorem is complete. $$\tag*{$\blacksquare$}$$

Hadamard’s theorem

Suppose \(f\) is entire and has growth order \(\rho_{0}\). Let \(k\in\mathbb Z\) be so that \(k \leq \rho_{0}<k+1\). If \(a_{1}, a_{2}, \ldots\) denote the (non-zero) zeros of \(f\), then \[f(z)=e^{P(z)} z^{m} \prod_{n=1}^{\infty} E_{k}\left(z / a_{n}\right),\] where \(P\) is a polynomial of degree \(\leq k\), and \(m\) is the order of the zero of \(f\) at \(z=0\), and \(E_k\) are the canonical factors for \(k\in\mathbb N\).

  • We gather a few lemmas needed in the proof of Hadamard’s theorem.

The canonical products satisfy \[\left|E_{k}(z)\right| \geq e^{-c|z|^{k+1}} \quad \text { if }\quad |z| \leq 1 / 2,\] and \[\left|E_{k}(z)\right| \geq|1-z| e^{-c|z|^{k}} \quad \text { if }\quad |z| \geq 1 / 2.\] Here, we allow the implied constant \(c=c_k\) to depend on \(k\in\mathbb N\).

  • If \(|z| \leq 1 / 2\) we can use the power series to define the logarithm of \(1-z\), so that \[E_{k}(z)=e^{\log (1-z)+\sum_{n=1}^{k} z^{n} / n}=e^{-\sum_{n=k+1}^{\infty} z^{n} / n}=e^{w}.\]

    Since \(\left|e^{w}\right| \geq e^{-|w|}\) and \(|w| \leq c|z|^{k+1}\), the first part follows.

  • For the second part, simply observe that if \(|z| \geq 1 / 2\), then \[\left|E_{k}(z)\right|=|1-z|\left|e^{z+z^{2} / 2+\cdots+z^{k} / k}\right|,\] and that there exists \(c^{\prime}>0\) such that \[\left|e^{z+z^{2} / 2+\cdots+z^{k} / k}\right| \geq e^{-\left|z+z^{2} / 2+\cdots+z^{k} / k\right|} \geq e^{-c^{\prime}|z|^{k}}. \qquad \tag*{$\blacksquare$}\]

For any \(s\in\mathbb R_+\) with \(\rho_{0}<s<k+1\), we have \[\left|\prod_{n=1}^{\infty} E_{k}\left(z / a_{n}\right)\right| \geq e^{-c|z|^{s}},\] except possibly when \(z\) belongs to the union of the discs centered at \(a_{n}\) of radius \(\left|a_{n}\right|^{-k-1}\), for \(n\in\mathbb Z_+\).

  • First, we write \[\prod_{n=1}^{\infty} E_{k}\left(z / a_{n}\right)=\prod_{\left|a_{n}\right| \leq 2|z|} E_{k}\left(z / a_{n}\right) \prod_{\left|a_{n}\right|>2|z|} E_{k}\left(z / a_{n}\right)\]

  • For the second product the estimate asserted above holds for all \(z\in\mathbb C\). Indeed, by the previous lemma \[\begin{aligned} \bigg|\prod_{\left|a_{n}\right|>2|z|} E_{k}\left(z / a_{n}\right)\bigg| & =\prod_{\left|a_{n}\right|>2|z|}\left|E_{k}\left(z / a_{n}\right)\right| \\ & \geq \prod_{\left|a_{n}\right|>2|z|} e^{-c | z / a_{n}|^{k+1}} \geq e^{-c|z|^{k+1} \sum_{\left|a_{n}\right|>2|z|}\left|a_{n}\right|^{-k-1}} . \end{aligned}\]

  • But \(\left|a_{n}\right|>2|z|\) and \(s<k+1\), so we must have \[\left|a_{n}\right|^{-k-1}=\left|a_{n}\right|^{-s}\left|a_{n}\right|^{s-k-1} \leq C\left|a_{n}\right|^{-s}|z|^{s-k-1} .\]

  • Therefore, the fact that \(\sum_{n\in\mathbb Z_+}\left|a_{n}\right|^{-s}\) converges implies that \[\bigg|\prod_{\left|a_{n}\right|>2|z|} E_{k}\left(z / a_{n}\right)\bigg| \geq e^{-c|z|^{s}}\] for some constant \(c>0\), which may depend on \(k\) and \(s\).

  • To estimate the first product, we use the second part of the previous lemma, and write \[\begin{align*} \bigg|\prod_{\left|a_{n}\right| \leq 2|z|} E_{k}\left(z / a_{n}\right)\bigg| \geq \prod_{\left|a_{n}\right| \leq 2|z|}\bigg|1-\frac{z}{a_{n}}\bigg| \prod_{\left|a_{n}\right| \leq 2|z|} e^{-c\left|z / a_{n}\right|^{k}}. \tag{*} \end{align*}\]

  • We now note that \[\prod_{\left|a_{n}\right| \leq 2|z|} e^{-c\left|z / a_{n}\right|^{k}} =e^{-c|z|^{k} \sum_{\left|a_{n}\right| \leq 2|z|}\left|a_{n}\right|^{-k}},\] and again, we have \(\left|a_{n}\right|^{-k}=\left|a_{n}\right|^{-s}\left|a_{n}\right|^{s-k} \leq C\left|a_{n}\right|^{-s}|z|^{s-k}\), thereby proving that \[\prod_{\left|a_{n}\right| \leq 2|z|} e^{-c^{\prime}\left|z / a_{n}\right|^{k}} \geq e^{-c|z|^{s}}.\]

  • The estimate on the first product on the right-hand side of (*) will require the restriction on \(z\) imposed in the statement of the lemma.

  • Indeed, whenever \(z\) does not belong to a disc of radius \(\left|a_{n}\right|^{-k-1}\) centered at \(a_{n}\), we must have \(\left|a_{n}-z\right| \geq\left|a_{n}\right|^{-k-1}\).

  • Therefore \[\begin{aligned} \prod_{\left|a_{n}\right| \leq 2|z|}\left|1-\frac{z}{a_{n}}\right| & =\prod_{\left|a_{n}\right| \leq 2|z|}\left|\frac{a_{n}-z}{a_{n}}\right| \\ & \geq \prod_{\left|a_{n}\right| \leq 2|z|}\left|a_{n}\right|^{-k-1}\left|a_{n}\right|^{-1} \\ & =\prod_{\left|a_{n}\right| \leq 2|z|}\left|a_{n}\right|^{-k-2} . \end{aligned}\]

  • Finally, the estimate for the first product follows from the fact that \[\begin{aligned} (k+2) \sum_{\left|a_{n}\right| \leq 2|z|} \log \left|a_{n}\right| & \leq(k+2) \mathfrak{n}_f(2|z|) \log 2|z| \\ & \leq c|z|^{s} \log 2|z| \\ & \leq c^{\prime}|z|^{s^{\prime}} \end{aligned}\] for any \(s^{\prime}>s\), and the second inequality follows as \(\mathfrak{n}(2|z|) \leq c|z|^{s}\).

  • Since we restricted \(s\) to satisfy \(s>\rho_{0}\), we can take an initial \(s\) sufficiently close to \(\rho_{0}\), so that the assertion of the lemma is established (with \(s\) being replaced by \(s^{\prime}\)). $$\tag*{$\blacksquare$}$$

Useful corollary

There exists a sequence of radii, \(r_{1}, r_{2}, \ldots\), with \(r_{m} \rightarrow \infty\), such that \[\bigg|\prod_{n=1}^{\infty} E_{k}\left(z / a_{n}\right)\bigg| \geq e^{-c|z|^{s}} \quad \text { for } \quad |z|=r_{m}.\]

Proof.

  • Since \(\sum_{n\in\mathbb Z_+}\left|a_{n}\right|^{-k-1}<\infty\), there exists \(N\in\mathbb Z_+\) so that \[\sum_{n=N}^{\infty}\left|a_{n}\right|^{-k-1}<1 / 10.\]

  • Therefore, given any two consecutive large integers \(L\) and \(L+1\), we can find \(r\in\mathbb R_+\) with \(L \leq r \leq L+1\), such that the circle of radius \(r\) centered at the origin does not intersect the forbidden discs from the previous lemma.

  • For otherwise, the union of the intervals \[I_{n}=\left[\left|a_{n}\right|-\frac{1}{\left|a_{n}\right|^{k+1}},\left|a_{n}\right|+\frac{1}{\left|a_{n}\right|^{k+1}}\right]\] (which are of length \(2\left|a_{n}\right|^{-k-1}\)) would cover all the interval \([L, L+1]\).

  • This would imply \(2 \sum_{n=N}^{\infty}\left|a_{n}\right|^{-k-1} \geq 1\), which is a contradiction. We can then apply the previous lemma with \(|z|=r\) to conclude the proof. $$\tag*{$\blacksquare$}$$

  • Let \[E(z)=z^{m} \prod_{n=1}^{\infty} E_{k}\left(z / a_{n}\right).\]

  • To prove that \(E\) is entire, we repeat the argument in the proof of Weierstrass theorem. Namely, we have \[\left|E_{k}\left(z / a_{n}\right)-1 \right| \leq 2e\left|\frac{z}{a_{n}}\right|^{k+1}, \quad \text { for all large } \quad n\in\mathbb Z_+,\] and that the series \(\sum_{n\in \mathbb Z_+}\left|a_{n}\right|^{-k-1}\) converges. (Recall \(\rho_{0}<s<k+1\).)

  • Moreover, \(E\) has the zeros of \(f\), therefore \(f / E\) is holomorphic and nowhere vanishing. Hence \[\frac{f(z)}{E(z)}=e^{g(z)}\] for some entire function \(g\).

  • By the fact that \(f\) has growth order \(\rho_{0}\), and because of the estimate from below for \(E\) obtained in the previous corollary, we have \[e^{\operatorname{Re}(g(z))}=\left|\frac{f(z)}{E(z)}\right| \leq c^{\prime} e^{c|z|^{s}}, \quad \text{ whenever } \quad |z|=r_{m}.\]

  • This proves that \[\operatorname{Re}(g(z)) \leq C|z|^{s}, \quad \text { for } \quad |z|=r_{m},\] where \((r_m)_{m\in\mathbb Z_+}\subseteq\mathbb R_+\) is a a sequence such that \(\lim_{m\to \infty}r_m=\infty\).

  • We have to prove that \(g\) is a polynomial of degree \(\le s\).

  • We can expand \(g\) in a power series centered at the origin \[g(z)=\sum_{n=0}^{\infty} a_{n} z^{n}\]

  • As a simple application of Cauchy’s integral formulas, we may write \[\frac{1}{2 \pi} \int_{0}^{2 \pi} g\left(r e^{i \theta}\right) e^{-i n \theta} d \theta = \begin{cases} a_{n} r^{n} & \text { if } n \geq 0, \\ 0 & \text { if } n<0. \end{cases}\]

  • By taking complex conjugates we find that \[\frac{1}{2 \pi} \int_{0}^{2 \pi} \overline{g\left(r e^{i \theta}\right)} e^{-i n \theta} d \theta=0\] whenever \(n>0\).

  • Since \(2 u=g+\overline{g}\) we add the above two equations and obtain \[a_{n} r^{n}=\frac{1}{\pi} \int_{0}^{2 \pi} u\left(r e^{i \theta}\right) e^{-i n \theta} d \theta, \quad \text { whenever } \quad n>0.\]

  • For \(n=0\) we find that \[2 \operatorname{Re}\left(a_{0}\right)=\frac{1}{\pi} \int_{0}^{2 \pi} u\left(r e^{i \theta}\right) d \theta.\]

  • Now we recall the simple fact that whenever \(n \neq 0\), the integral of \(e^{-i n \theta}\) over any circle centered at the origin vanishes. Therefore \[a_{n}=\frac{1}{\pi r^{n}} \int_{0}^{2 \pi}\left[u\left(r e^{i \theta}\right)-C r^{s}\right] e^{-i n \theta} d \theta \quad \text { when } \quad n>0.\]

  • Taking \(r=r_m\), we consequently obtain \[\left|a_{n}\right| \leq \frac{1}{\pi r_m^{n}} \int_{0}^{2 \pi}\left[C r_m^{s}-u\left(r_m e^{i \theta}\right)\right] d \theta \leq 2 C r_m^{s-n}-2 \operatorname{Re}\left(a_{0}\right) r_m^{-n}.\]

  • Letting \(m\to \infty\) we deduce \(a_{n}=0\) for any \(n>s\). This completes the proof of Hadamard’s theorem. $$\tag*{$\blacksquare$}$$

Example

  • The function \(\sin \pi s\) is entire and of order one, and its zeros are at \(s=0, \pm 1, \pm 2, \ldots\), and so, by Hadamard’s theorem we can write \[\sin \pi s=s e^{H(s)} \prod_{n=1}^{\infty}\left(1-\frac{s^{2}}{n^{2}}\right),\] where \(H(s)=a s+b\).

  • Taking the logarithmic derivative of this equation, we find that \[\pi \frac{\cos \pi s}{\sin \pi s}=\frac{1}{s}+H^{\prime}(s)-\sum_{n=1}^{\infty} \frac{2 s}{n^{2}-s^{2}} .\]

  • Passage to the limit as \(s \rightarrow 0\) gives \(a=0\), and so \(H(s)=b\). Thus, \[\frac{\sin \pi s}{s}=c \prod_{n=1}^{\infty}\left(1-\frac{s^{2}}{n^{2}}\right) .\]

  • Passing again to the limit as \(s \rightarrow 0\) gives \(c=\pi\), i.e. \[\sin \pi s=\pi s \prod_{n=1}^{\infty}\left(1-\frac{s^{2}}{n^{2}}\right).\]

Euler’s gamma function

  • The Euler gamma function \(\Gamma(s)\) is defined by the equation \[\frac{1}{\Gamma(s)}=s e^{\gamma s} \prod_{n=1}^{\infty}\left(1+\frac{s}{n}\right) e^{-s / n}\] where \(\gamma\) is Euler’s constant.

  • It follows from the definition that \(\Gamma^{-1}(s)\) is an entire function of order at most one.

  • Moreover, \(\Gamma(s)\) is an analytic function in the entire \(s\)-plane except for the points \(s=0,-1,-2, \ldots\), where it has simple poles.

For every \(s\in\mathbb C\setminus\{-n: n\in\mathbb N\}\), we have \[\Gamma(s)=\frac{1}{s} \prod_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{s}\left(1+\frac{s}{n}\right)^{-1}.\] In other words, \(\Gamma(s)\) is a meromorphic function on \(\mathbb C\) with simple poles at \(0\) and at the negative integers and with no zeros.

  • From the definition of an infinite product and from the definition of the function \(\Gamma(s)\), we obtain \[\begin{aligned} \frac{1}{\Gamma(s)} & =s \lim _{m \rightarrow \infty} e^{s\left(1+\frac{1}{2}+\ldots+\frac{1}{m}-\log m\right)} \cdot \lim _{m \rightarrow \infty} \prod_{n=1}^{m}\left(1+\frac{s}{n}\right) e^{-\frac{s}{n}} \\ & =s \lim _{m \rightarrow \infty} m^{-s} \prod_{n=1}^{m}\left(1+\frac{s}{n}\right)\\ &=s \lim _{m \rightarrow \infty} \prod_{n=1}^{m-1}\left(1+\frac{1}{n}\right)^{-s} \prod_{n=1}^{m}\left(1+\frac{s}{n}\right) \\ & =s \lim _{m \rightarrow \infty} \prod_{n=1}^{m}\left(1+\frac{1}{n}\right)^{-s}\left(1+\frac{s}{n}\right)\left(1+\frac{1}{m}\right)^{s} \\ & =s \prod_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{-s}\left(1+\frac{s}{n}\right), \end{aligned}\] which is what we had to prove.$$\tag*{$\blacksquare$}$$

Properties of Gamma function

For every \(s\in\mathbb C\setminus\{-n: n\in\mathbb N\}\), we have \[\Gamma(s)=\lim _{n \rightarrow \infty} \frac{(n-1)! \cdot n^{s}}{s(s+1) \cdot \ldots \cdot (s+n-1)}.\]

Proof.

  • From the previous theorem we have \[\begin{aligned} \Gamma(s)&=\lim_{n\to \infty}s^{-1} \prod_{m=1}^{n-1}\left(1+\frac{1}{m}\right)^{s}\left(1+\frac{s}{m}\right)^{-1}\\ &=\lim_{n\to \infty}\frac{2^s\cdot\frac{3^s}{2^s}\cdot\ldots\cdot\frac{n^s}{(n-1)^s}}{s\cdot \frac{(s+1)}{1}\cdot\ldots\cdot \frac{(s+n-1)}{n-1}}\\ &=\lim_{n\to \infty}\frac{1\cdot 2\cdot\ldots\cdot (n-1)n^s}{s\cdot (s+1)\cdot\ldots\cdot (s+n-1)} \end{aligned}\]

as desired.$$\tag*{$\blacksquare$}$$

We also have \(\Gamma(1)=\Gamma(2)=1\).

  • We have \(\Gamma(s+1)=s \Gamma(s)\) for all \(s\in\mathbb C\setminus\{-n: n\in\mathbb N\}\).

  • In particular, \(\Gamma(n+1)=n!\) for all \(n\in\mathbb N\), and \({\rm res}_{s=-m}\Gamma(s)=\frac{(-1)^m}{m!}\).

Proof.

  • We have \[\begin{aligned} \frac{\Gamma(s+1)}{\Gamma(s)}&=\frac{s}{s+1} \lim _{m \rightarrow \infty} \prod_{n=1}^{m} \frac{\left(1+\frac{1}{n}\right)^{s+1}\left(1+\frac{s+1}{n}\right)^{-1}}{\left(1+\frac{1}{n}\right)^{s}\left(1+\frac{s}{n}\right)^{-1}} \\ & =\frac{s}{s+1} \lim _{m \rightarrow \infty} \prod_{n=1}^{m} \frac{n+1}{n} \cdot \frac{n+s}{n+s+1}\\ &=\frac{s}{s+1} \lim _{m \rightarrow \infty} \frac{(m+1)(s+1)}{m+1+s}=s . \end{aligned}\]

This completes the proof.$$\tag*{$\blacksquare$}$$

\[\Gamma(2s)\Gamma\left(1/2\right)= 2^{2s-1} \Gamma\left(s\right) \Gamma\left(s+1/2\right) \quad \text{ for all }\quad s\in\mathbb C\setminus(-\mathbb N).\]

\[\frac{\sin \pi s}{\pi}=\frac{1}{\Gamma(s) \Gamma(1-s)} \quad \text{ for all }\quad s\in\mathbb C.\]

Proof.

  • We know that \[\frac{\sin \pi s}{\pi s}= \prod_{n=1}^{\infty}\left(1-\frac{s^{2}}{n^{2}}\right).\]

  • On the other hand, we have \[\frac{1}{\Gamma(s)\Gamma(-s)}=-s^2\prod_{n=1}^{\infty}\left(1-\frac{s^{2}}{n^{2}}\right)\]

  • But we also know that \(\Gamma(1-s)=-s\Gamma(-s)\), and the result follows.

$$\tag*{$\blacksquare$}$$

As a corollary we obtain that \(\Gamma(1/2)=\sqrt{\pi}\).

Integral representation of the gamma function

Suppose that \(\operatorname{Re}(s)>0\). Then \[\begin{aligned} \Gamma(s)=\int_{0}^{\infty} e^{-t} t^{s-1} d t. \end{aligned}\]

Proof.

  • We know that \[\Gamma(s)=\lim _{n \rightarrow \infty} \frac{n!\cdot n^{s}}{s(s+1)(s+2) \cdots(s+n)}.\]

  • We have to establish two things. Firstly, we will show that \[\int_{0}^{n}\left(1-\frac{t}{n}\right)^{n} t^{s-1} d t=\frac{n!\cdot n^{s}}{s(s+1)(s+2)\cdot \ldots \cdot (s+n)} \quad \text{ for all }\quad n\in\mathbb Z_+.\]

  • Secondly, we will show that

    \[\lim _{n \rightarrow \infty} \int_{0}^{n}\left(1-\frac{t}{n}\right)^{n} t^{s-1} d t=\int_{0}^{\infty} e^{-t} t^{s-1} d t,\] which will complete the proof.

  • Indeed, when \(s>0\) the above integral converges and we have \[\begin{aligned} \int_{0}^{n}\left(1-\frac{t}{n}\right)^{n} t^{s-1} d t & =n^{s} \int_{0}^{1}(1-u)^{n} u^{s-1} d u \\ & =n^{s} \frac{n}{s} \int_{0}^{1}(1-u)^{n-1} u^{s} d u \\ & =n^{s} \frac{n(n-1)}{s(s+1)} \int_{0}^{1}(1-u)^{n-2} u^{s+1} d u \\ & \hspace{2cm} \vdots \\ & =n^{s} \frac{n(n-1) \cdot \ldots\cdot 1}{s(s+1) \cdot \ldots\cdot (s+n-1)} \int_{0}^{1} u^{s+n-1} d u \\ & =\frac{n!\cdot n^{s}}{s(s+1)(s+2) \cdot \ldots\cdot (s+n)} . \end{aligned}\]

  • Thus, it suffices to prove that \[\lim _{n \rightarrow \infty} \int_{0}^{n}\left(1-\frac{t}{n}\right)^{n} t^{s-1} d t=\int_{0}^{\infty} e^{-t} t^{s-1} d t.\]

  • To this end, we consider the functions \[f_{n}(t)= \begin{cases}(1-t / n)^{n} t^{s-1} & \text { if } 0 \leq t \leq n, \\ 0 & \text { if } t>n .\end{cases}\]

  • Each of these functions is in \(L^{1}([0, \infty))\) and satisfies the inequality \[\left|\: f_{n}(t)\right| \leq e^{-t} t^{\sigma-1}, \quad \text{ where } \quad \sigma=\operatorname{Re}(s).\]

  • The last inequality is easily verified by taking logarithms and noting \[n \log \left(1-\frac{t}{n}\right)=-t-\frac{t^{2}}{2 n}-\frac{t^{3}}{3 n^{2}}-\cdots<-t .\]

  • Furthermore, \[\lim _{n \rightarrow \infty} f_{n}(t)=t^{s-1} \lim _{n \rightarrow \infty}\left(1-\frac{t}{n}\right)^{n}=e^{-t} t^{s-1} .\]

  • Since the function \(e^{-t} t^{\sigma-1}\) is in \(L^{1}([0, \infty))\), the dominated convergence theorem yields \[\lim _{n \rightarrow \infty} \int_{0}^{\infty} f_{n}(t) d t =\int_{0}^{\infty} \lim _{n \rightarrow \infty} f_{n}(t) d t =\int_{0}^{\infty} e^{-t} t^{s-1} d t,\] which completes the proof of the lemma.$$\tag*{$\blacksquare$}$$

Stirling’s formula

Suppose that \(s\in mathbb C\) such that \(|\arg s|<\pi\). Then \[\log \Gamma(s)=(s-1 / 2) \log s-s+\log \sqrt{2 \pi}+\int_{0}^{\infty} \frac{\psi(u)}{u+s} d u.\] Here \(\log s\) denotes the principal branch of the logarithm and \(\psi(u)=\{u\}-1 / 2\).

Suppose that \(0<\delta<\pi\) and \(|\arg s|<\pi-\delta\). Then \[\log \Gamma(s)=(s-1 / 2) \log s-s+\log \sqrt{2 \pi}+O\left(|s|^{-1}\right)\] uniformly as \(|s|\to \infty\), and \(\frac{\Gamma^{\prime}(s)}{\Gamma(s)}=\log s+O\left(|s|^{-1}\right),\) where the implied constants depending at most on \(\delta\).

Suppose that \(\alpha \leq \sigma \leq \beta\) and \(|t| \geq 1\). Then \[|\Gamma(\sigma+i t)|=\sqrt{2 \pi}|t|^{\sigma-1 / 2} \exp (-\pi|t| / 2)\big(1+O(|t|^{-1})\big),\] where the implied constant depending at most on \(\alpha\) and \(\beta\).

Riemann zeta-function

Definition (Riemann zeta-function). The Riemann zeta-function \(\zeta(s)\) is defined for all complex numbers \(s=\sigma+i t\) such that \(\sigma>1\) by \[\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}.\]

  • By the absolute convergence all complex numbers \(s=\sigma+i t\) such that \(\sigma>1\) we also have the Euler product formula \[\zeta(s)=\prod_{p\in\mathbb P}\left(1-\frac{1}{p^{s}}\right)^{-1}.\]

  • The Euler product formula enables us to see that \(\zeta(s) \neq 0\) in the half-plane \(\sigma>1\). Indeed, for \(\sigma>1\) we have \[\begin{aligned} \frac{1}{|\zeta(s)|}=\prod_{p\in\mathbb P}\left|1-\frac{1}{p^{s}}\right| \le \prod_{p\in\mathbb P}\left(1+\frac{1}{p^{\sigma}}\right)\le \sum_{n=1}^\infty\frac{1}{n^\sigma}\le 1+\int_1^\infty\frac{dt}{t^\sigma}=\frac{\sigma}{\sigma-1}. \end{aligned}\] Thus \(|\zeta(s)|\ge\frac{\sigma-1}{\sigma}>0\).

Remarks

Euler’s summation formula. If \(f \in C^{1}([a, b])\), and \(\psi(x)=\{x\}-1/2\) for \(x\in\mathbb R\), then by summation by parts we obtain the following identity \[\sum_{a<n \leqslant b} f(n)=\int_{a}^{b} f(x) dx+f(a) \psi(a)-f(b) \psi(b) +\int_{a}^{b} f^{\prime}(x) \psi(x) dx.\]

  • By the summation by parts formula we can derive

  • Let \(x \geqslant 1\) be a real number and \(s=\sigma+i t\) with \(\sigma>1\). By the Euler summation formula with \(a=1, b=x\) and \(f(x)=x^{-s}\), we can write \[\sum_{n \leqslant x} \frac{1}{n^{s}}=\frac{1}{2}+\frac{1-x^{1-s}}{s-1}-\frac{\psi(x)}{x^{s}}-s \int_{1}^{x} \frac{\psi(u)}{u^{s+1}} d u.\]

  • Taking \(x \to \infty\) we obtain \[\zeta(s)=\frac{1}{2}+\frac{1}{s-1}-s \int_{1}^{\infty} \frac{\psi(u)}{u^{s+1}} du.\tag{*}\]

  • Since \(|\psi(x)| \leqslant \frac{1}{2}\), the integral converges for \(\sigma>0\) and is uniformly convergent in any finite region to the right of the line \(\sigma=0\).

  • This implies that it defines an analytic function in the half-plane \(\sigma>0\), and therefore (*) extends \(\zeta\) to a meromorphic function in this half-plane, which is analytic except for a simple pole at \(s=1\) with residue \(1\).

The Theta function

  • Replacing \(x\) by \(\pi n^{2} x\) in the integral defining \(\Gamma(s/2)\) gives \[\pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) n^{-s}=\int_{0}^{\infty} x^{s / 2-1} e^{-\pi n^{2} x} d x \quad \text{ for all } \quad \sigma>0.\]

  • The purpose is to sum both sides of this equation. To this end, we define the following two Theta functions. For all \(x>0\), we set \[\omega(x)=\sum_{n=1}^{\infty} e^{-\pi n^{2} x} \quad \text { and } \quad \theta(x)=2 \omega(x)+1=\sum_{n \in \mathbb{Z}} e^{-\pi n^{2}x}.\]

  • Then \(g(t) =e^{-\pi t^{2}}\) satisfies \(\int_{\mathbb{R}} g(t) dt=1\), and its Fourier transform is \[\widehat{g}(u)=e^{-\pi u^{2}}.\]

  • For a Schwartz function \(f\), by the Poisson summation formula, we have \(\sum_{n\in \mathbb Z}\widehat{f}(n)=\sum_{n\in \mathbb Z}f(n)\), hence \[\theta(x)=\sum_{n\in\mathbb Z}g(\sqrt{x}n)=x^{-1/2}\theta(x^{-1}) \quad \text{ for all } \quad x>0.\]

  • Summing this equation over \(n\in \mathbb Z_+\) and interchanging the sum and integral, we obtain for all \(\sigma>1\) that \[\pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) \zeta(s)=\int_{0}^{\infty} x^{s / 2-1} \omega(x) d x,\] since the sum and integral converge absolutely in the half-plane \(\sigma>1\).

  • Splitting the integral \(\int_{0}^\infty=\int_0^1+\int_1^\infty\) and changing the variables \(x\mapsto 1 / x\) in the first integral yields \[\pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) \zeta(s)=\int_{1}^{\infty} x^{s / 2-1} \omega(x) d x+\int_{1}^{\infty} x^{-s / 2-1} \omega\left(\frac{1}{x}\right) dx.\]

  • Using \(\theta(x^{-1})=x^{1/2}\theta(x)\) we may write \[\omega\left(\frac{1}{x}\right)=x^{1 / 2} \omega(x)+\frac{x^{1 / 2}-1}{2},\] and consequently we obtain \[\pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) \zeta(s) =-\frac{1}{s}+\frac{1}{s-1}+\int_{1}^{\infty} \omega(x)\left(x^{s / 2}+x^{(1-s) / 2}\right) \frac{dx}{x},\] whenever \(\sigma>1\).

Functional equation

Let \[\begin{aligned} \Xi(s)&=\pi^{-s / 2} \Gamma(s / 2) \zeta(s)\\ &=-\frac{1}{s}+\frac{1}{s-1}+\frac{1}{2}\int_{1}^{\infty} (\theta(x)-1)\left(x^{s / 2}+x^{(1-s) / 2}\right) \frac{dx}{x}, \end{aligned}\] where \(\theta\) is the Theta function \[\theta(x)=\sum_{n \in \mathbb{Z}} e^{-\pi n^{2}x}.\]

  • Then the function \(\Xi(s)\) can be extended analytically in the whole complex plane to a meromorphic function having simple poles at \(s=0\) and \(s=1\), and satisfies the functional equation \(\Xi(s)=\Xi(1-s)\).

  • Thus the Riemann zeta-function can be extended analytically in the whole complex plane to a meromorphic function having a simple pole at \(s=1\) with residue \(1\). Furthermore, for all \(s \in \mathbb{C} \backslash\{1\}\), we have \[\zeta(s)=2^{s} \pi^{s-1} \sin \left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s).\]

  • For \(\sigma>1\) we have \[\begin{align*} \Xi(s)=-\frac{1}{s}+\frac{1}{s-1}+\int_{1}^{\infty} \omega(x)\left(x^{s / 2}+x^{(1-s) / 2}\right) \frac{dx}{x}. \tag{*} \end{align*}\]

  • Since \(\omega(x) =O (e^{-\pi x})\) as \(x \to \infty\), we infer that the integral is absolutely convergent for all \(s \in \mathbb{C}\) whereas the left-hand side is a meromorphic function on \(\sigma>0\). This implies that

    • The identity (*) is valid for all \(\sigma>0\).

    • The function \(\Xi(s)\) can be defined by this identity as a meromorphic function on \(\mathbb{C}\) with simple poles at \(s=0\) and \(s=1\).

    • Since the right-hand side of (*) is invariant under the substitution \(s \mapsto 1-s\), we obtain \(\Xi(s)=\Xi(1-s)\).

    • The function \(s \mapsto \xi(s):=s(s-1) \Xi(s)\) is entire on \(\mathbb{C}\). Indeed, if \(\sigma>0\), the factor \(s-1\) counters the pole at \(s=1\), and the result on all \(\mathbb{C}\) follows from the functional equation.

  • It remains to show that the functional equation can be written as \[\zeta(s)=2^{s} \pi^{s-1} \sin \left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s).\]

  • Since \(\Xi(s)=\Xi(1-s)\), we have \[\Gamma(s / 2) \zeta(s)=\pi^{s/2}\Xi(s)=\pi^{s/2}\Xi(1-s)=\pi^{s-1 / 2} \Gamma\left(\frac{1-s}{2}\right) \zeta(1-s).\]

  • Multiplying both sides by \(\pi^{-1 / 2} 2^{s-1} \Gamma\left(\frac{1+s}{2}\right)\) and using the duplication formula, asserting that \(\Gamma(s)= \pi^{-1 / 2}2^{s-1} \Gamma\left(s/2\right) \Gamma\left((s+1)/2\right)\) we see \[\Gamma(s) \zeta(s)=(2 \pi)^{s-1} \Gamma\left(\frac{1-s}{2}\right) \Gamma\left(\frac{1+s}{2}\right) \zeta(1-s)\]

  • Now the reflection formula \(\frac{\sin \pi s}{\pi}=\frac{1}{\Gamma(s) \Gamma(1-s)}\), implies that \[\zeta(s)=(2 \pi)^{s-1}\left(\frac{\sin \pi s}{\sin (\pi(1+s) / 2)}\right) \Gamma(1-s) \zeta(1-s)\] and the result follows from the identity \[\sin \pi s=2 \sin \left(\frac{\pi s}{2}\right) \sin \left(\frac{\pi}{2}(1+s)\right).\]

The proof is complete. $$\tag*{$\blacksquare$}$$

Remarks

  • \(\zeta(s)\) has simple zeros at \(s=-2,-4,-6,-8, \ldots\). Indeed, since the integral in (*) is absolutely convergent for all \(s \in \mathbb{C}\) and since \(\omega(x)>0\) for all \(x\in\mathbb R\), we have \[\Xi(-2 n)=\frac{1}{2 n}-\frac{1}{2 n+1}+\int_{1}^{\infty} \omega(x)\left(x^{-n}+x^{n+1 / 2}\right) \frac{dx}{x}>0\] for all \(n\in\mathbb Z_+\). The result follows from the fact that \(\Gamma(s / 2)\) has simple poles at \(s=-2 n\).

  • These zeros are the only ones lying in the region \(\sigma<0\). They are called trivial zeros of the Riemann zeta-function.

  • For all \(0<\sigma<1\), we have \(\zeta(\sigma) \neq 0\). Indeed, for all \(\sigma>0\) we see \[\zeta(s)=\frac{s}{s-1}-s \int_{1}^{\infty} \frac{\{x\}}{x^{s+1}} dx\] we infer that, for all \(0<\sigma<1\), we get \[\left|\zeta(\sigma)-\frac{\sigma}{\sigma-1}\right|<\sigma \int_{1}^{\infty} \frac{dx}{x^{\sigma+1}}=1,\] which implies that \(\zeta(\sigma)<1+\sigma /(\sigma-1)\) for all \(0<\sigma<1\).

  • Hence \(\zeta(\sigma)<0\) for all \(\frac{1}{2} \leqslant \sigma<1\), and the functional equation implies the asserted result.

Top