1. Introduction and basic set theory
2. Three important principles and their consequences
3. Least Upper Bounds and Greatest Lower Bounds; Fields and Ordered Fields; Axiom of Completeness
4. Dedekind cuts, construction of $\mathbb R$ from $\mathbb Q$; Consequences of the Axiom of Completeness; Decimals, Extended Real Number System
5. The Limit of a Sequence; The Algebraic and Order Limit; Theorems; Squeeze Theorem and Diverging Sequences
6. Subsequences and Cauchy Sequences; Monotone Convergence Theorem and Bolzano--Weierstrass Theorem; Cauchy Completeness and; Complex field
7. More about sequences; Classical inequalities in analysis
8. Stolz theorem and Euler's number; Upper and lower limits
9. Infinite series and their properties
10. Absolute and conditional convergence of infinite series
11. Functions and their properties; Cartesian products and Axion of Choice
12. Axiom of Choice, Cardinality, Cantor's theorem
13. Countable sets, cardinality continuum
14. Metric spaces basic properties
15. Complete spaces; and Compact sets
16. Compact sets, Perfect Sets, Connected Sets; and Cantor set
17. Continuous functions; Continuous functions on compact and connected sets
18. Uniform continuity; Banach Contraction Principle; Sets of Discontinuity
19. Derivatives, the; Mean-Value Theorem and its Consequences; Higher Order Derivatives; Convex and Concave functions
20. Exponential Function and Natural Logarithm Function; Power Series and Taylor's theorem
21. Power series of trigonometric functions done right; Fundamental Theorem of Algebra; and Taylor expansions of other important functions and applications
22. Riemann Integrals
23. Uniform Convergence of a Sequence of Functions; Uniform Convergence and Differentiation; Series of Functions; The Weierstrass Approximation Theorem
24. Applications of calculus: Fundamental theorem of algebra; Stirling's formula, Equidistribution theorem of Weyl; Transcendence of the Euler's number

8. Stolz theorem and Euler's number; Upper and lower limits  PDF

Stolz theorem and applications

Stolz theorem

Stolz theorem. Let \((x_n)_{n \in \mathbb{N}}\), \((y_n)_{n \in \mathbb{N}}\) be two sequences so that

  1. \((y_n)_{n \in \mathbb{N}}\) strictly increases to \(+\infty\), i.e. \(y_n<y_{n+1}\) for all \(n \in \mathbb{N}\) and \[\lim\limits_{n \to \infty}y_n=+\infty.\]

  2. Also we have \[\lim_{n \to \infty}\frac{x_n-x_{n-1}}{y_n-y_{n-1}}=a,\]

then \[\lim_{n \to \infty}\frac{x_n}{y_n}=a.\]

Remark: It is a prototype of a l’Hôpital’s rule.

  • Without loss of generality we may assume that \(y_{n} > 0\), since \(\lim\limits_{n \to \infty}y_n=+\infty\) and thus we have \(y_{n} > 0\) for large \(n \in \mathbb{N}\).

  • Since \(\lim\limits_{n \to \infty}\frac{x_n-x_{n-1}}{y_n-y_{n-1}}=a\), there is \(M>0\) such that for \(n \ge M\) we have \[\begin{aligned} a - \frac{\varepsilon}{2} < \frac{x_n-x_{n-1}}{y_n-y_{n-1}} < a + \frac{\varepsilon}{2} . \end{aligned}\] So for \(n \ge M\) we have \[\begin{aligned} {\color{blue} \Big(a -\frac{\varepsilon}{2} \Big) (y_n-y_{n-1}) < } x_n-x_{n-1} {\color{purple} < \Big(a + \frac{\varepsilon}{2} \Big) (y_n-y_{n-1}) }. \end{aligned}\]

  • Summing now from \(k=M\) to \(k=n\) for any \(n \ge M\) we get \[\begin{aligned} \Big(a - \frac{\varepsilon}{2} \Big) (y_{n}-y_{M-1}) & = {\color{blue} \sum_{k=M}^{n} \Big(a - \frac{\varepsilon}{2} \Big) (y_k-y_{k-1}) < } \sum_{k=M}^{n} (x_k-x_{k-1}) \\ = x_{n}-x_{M-1} & {\color{purple} < \sum_{k=M}^{n} \Big(a + \frac{\varepsilon}{2} \Big) (y_{k}-y_{k-1})} = \Big(a + \frac{\varepsilon}{2} \Big) (y_{n}-y_{M-1}). \end{aligned}\] since the above sums are telescoping.

  • Therefore dividing by \(y_{n}-y_{M-1}\) for any \(n \ge M\) we obtain \[\begin{aligned} a - \frac{\varepsilon}{2} < \frac{x_{n}-x_{M-1}}{y_{n}-y_{M-1}} < a + \frac{\varepsilon}{2} . \end{aligned}\] So \[\begin{aligned} {\color{blue} \Big| \frac{x_{n}-x_{M-1}}{y_{n}-y_{M-1}} - a \Big| < \frac{\varepsilon}{2} } \qquad \text{for $n \ge M$.} \end{aligned}\]

  • Observe that \[\begin{aligned} {\color{red} \Big| \frac{x_{n} }{y_{n}} - \Big( 1 - \frac{y_{M-1}}{y_{n}} \Big) \frac{x_{n}-x_{M-1}}{y_{n}-y_{M-1}} \Big| } = \Big| \frac{x_{n} }{y_{n}} - \frac{x_{n}-x_{M-1}}{y_{n}} \Big| = {\color{red} \Big| \frac{x_{M-1}}{y_{n}} \Big| }, \end{aligned}\] so the triangle inequality gives us for \(n \ge M\) the inequalities \[\begin{aligned} \Big| \frac{x_{n} }{y_{n}} - a \Big| & \le {\color{red} \Big| \frac{x_{n} }{y_{n}} - \Big( 1 - \frac{y_{M-1}}{y_{n}} \Big) \frac{x_{n}-x_{M-1}}{y_{n}-y_{M-1}} \Big| } + \Big| \Big( 1 - \frac{y_{M-1}}{y_{n}} \Big) \frac{x_{n}-x_{M-1}}{y_{n}-y_{M-1}} - a \Big| \\ & \le {\color{red} \Big| \frac{x_{M-1}}{y_{n}} \Big| } + \Big| \Big( 1 - \frac{y_{M-1}}{y_{n}} \Big) \Big| {\color{blue} \Big| \frac{x_{n}-x_{M-1}}{y_{n}-y_{M-1}} - a \Big| } + |a| \frac{y_{M-1}}{y_{n}} \\ & < \frac{\varepsilon}{2} + \frac{|x_{M-1}| + |a| y_{M-1}}{y_{n}}. \end{aligned}\]

So for \(n \ge M\) we have \[\begin{aligned} \Big| \frac{x_{n} }{y_{n}} - a \Big| < \frac{\varepsilon}{2} + \frac{|x_{M-1}| + |a| y_{M-1}}{y_{n}}. \end{aligned}\] Since \(\lim\limits_{n \to \infty}y_n=+\infty\), we may choose \(N\ge M\) such that for \(n \ge N\) we have \[\frac{|x_{M-1}| + |a| y_{M-1}}{y_{n}} < \frac{\varepsilon}{2}.\] Therefore for \(n \ge N\) we get \[\begin{aligned} \Big| \frac{x_{n} }{y_{n}} - a \Big| < \varepsilon \end{aligned}\] and the proof is finished. $$\tag*{$\blacksquare$}$$

Example 1/2

Exercise. Let \(k \in \mathbb{N}\) be fixed. Find the limit \[\begin{aligned} \lim_{n \to \infty} \frac{1^k + \ldots + n^{k}}{n^{k+1}}. \end{aligned}\]

Proof. We apply Stolz’s theorem with \[\begin{aligned} x_{n} = 1^k + \ldots + n^{k}, \qquad y_n = n^{k+1}. \end{aligned}\] Observe that \((y_n)_{n \in \mathbb{N}}\) is strictly increasing and \(\lim\limits_{n \to \infty} y_{n} = + \infty\). Therefore it suffices to compute \[\begin{aligned} \lim_{n \to \infty} \frac{x_n-x_{n-1}}{y_n-y_{n-1}} = \lim_{n \to \infty} \frac{n^{k}}{n^{k+1} - (n-1)^{k+1}}. \end{aligned}\]

Example 2/2

Using the binomial theorem we get \[\begin{aligned} (n-1)^{k+1} &= \sum_{m=0}^{k+1} \binom{k+1}{m} n^m (-1)^{k+1 -m} \\ &= n^{k+1} - (k+1)n^k + \sum_{m=0}^{k-1} \binom{k+1}{m} n^m (-1)^{k+1 -m} \end{aligned}\] So we have \[\begin{aligned} \lim_{n \to \infty} \frac{n^{k}}{n^{k+1} - (n-1)^{k+1}} & = \lim_{n \to \infty} \frac{n^{k}}{ (k+1)n^k - \sum_{m=0}^{k-1} \binom{k+1}{m} n^m (-1)^{k+1 -m} } \\ & = \lim_{n \to \infty} \frac{1}{ (k+1) - \sum_{m=0}^{k-1} \binom{k+1}{m} {\color{blue} n^{m-k} } (-1)^{k+1 -m} } \\ & = \frac{1}{ (k+1)}. \end{aligned}\] $$\tag*{$\blacksquare$}$$

Application

Proposition. Let \((a_n)_{n \in \mathbb{N}}\) and \((b_n)_{n \in \mathbb{N}}\) be two sequences such that

  1. \(b_n >0\), \(n \in \mathbb{N}\) and \(\lim\limits_{n \to \infty}b_n=+\infty\),

  2. \(\lim\limits_{n \to \infty}\frac{a_n}{b_n}=g\).

then \[\lim_{n \to \infty}\frac{a_1+\ldots+a_n}{b_1+\ldots+b_n}=g.\]

Proof. We apply Stolz’s theorem with \(x_{n} = a_{1} + \ldots + a_{n}\) and \(y_{n} = b_{1} + \ldots + b_{n}\). Then the assumptions of the Stolz theorem are satisfied as \(y_{n+1} - y_{n} = b_{n+1} >0\) and \(y_{n} \ge b_{n}\) both diverge to \(+ \infty\), and \[\begin{aligned} \lim_{n \to \infty}\frac{x_n-x_{n-1}}{y_n-y_{n-1}} = \lim_{n \to \infty} \frac{a_n}{b_{n}} = g. \end{aligned}\] Therefore \(\lim\limits_{n \to \infty} \frac{x_n}{y_{n}} = g\) and the proof is finished. $$\tag*{$\blacksquare$}$$

Euler’s number

Euler’s sequences: 1/4

Consider two sequences \((a_n)_{n \in \mathbb{N}}\) and \((b_n)_{n \in \mathbb{N}}\) defined by

\[\begin{aligned} {\color{red}a_n=\left(1+\frac{1}{n}\right)^n}, \qquad {\color{blue}b_n=\left(1+\frac{1}{n}\right)^{n+1}} \quad \text{ for all } \quad n \in \mathbb{N} \end{aligned}\].

We have the following properties.

  1. Observe that \(a_n<b_n\) for all \(n \in \mathbb{N}\). Indeed, \[{\color{red}a_n=\left(1+\frac{1}{n}\right)^n}<{\color{blue}\left(1+\frac{1}{n}\right)^{n+1}=b_n,}\] since \(1<1+\frac{1}{n}\) for all \(n \in \mathbb{N}\).

Euler’s sequences: 2/4

  1. The sequence \((a_n)_{n \in \mathbb{N}}\) is strictly increasing, i.e. \[a_n<a_{n+1} \quad \text{ for all } \quad n \in \mathbb{N}.\]

    Proof. By the geometric-arithmetic mean inequality \(G_{n+1}<A_{n+1}\) (which is strict unless \(x_1=x_2=\ldots=x_{n+1}\)) with \[x_1=1\quad \text{ and } \quad x_2=x_3=\ldots=x_{n+1}=1+\frac{1}{n},\]

    we obtain \[G_{n+1}=\left(\left(1+\frac{1}{n}\right)^{n}\right)^{1 / (n+1)} < \frac{1+n\left(1+\frac{1}{n}\right)}{n+1}=1+\frac{1}{n+1}=A_{n+1}.\]

    Thus \[{\color{red}a_n}=\left(1+\frac{1}{n}\right)^n<\left(1+\frac{1}{n+1}\right)^{n+1}={\color{red}a_{n+1}}.\] $$\tag*{$\blacksquare$}$$

Euler’s sequences: 3/4

  1. The sequence \((b_n)_{n \in \mathbb{N}}\) is strictly decreasing, i.e. \[b_{n+1}<b_n \quad \text{ for all } \quad n \in \mathbb{N}.\] Proof. By the harmonic-geometric mean inequality \(H_{n+1}<G_{n+1}\) (which is strict unless \(x_1=x_2=\ldots=x_{n+1}\)) with \[x_1=1\quad \text{ and }\quad x_2=x_3=\ldots=x_{n+1}=1+\frac{1}{n-1}=\frac{n}{n-1}.\] Then \[H_{n+1}=\frac{n+1}{1+n\frac{n-1}{n}}<\left(1+\frac{1}{n-1}\right)^{n / (n+1)}=G_{n+1},\] thus \[{\color{blue}b_n}=\left(1+\frac{1}{n}\right)^{n+1}<\left(1+\frac{1}{n-1}\right)^{n}={\color{blue}b_{n-1}}.\tag*{$\blacksquare$}\]

Euler’s sequences: 4/4

Collecting (1),(2),(3) we have \[2=a_1<a_n<a_{n+1}<b_{n+1}<b_n<b_1=4 \quad \text{ for all } \quad n \geq 2.\]

Thus the limits \(\lim_{n \to \infty} a_n\) and \(\lim_{n \to \infty}b_n\) exist and \[\lim_{n \to \infty}b_n=\lim_{n \to \infty}\left(1+\frac{1}{n}\right)a_n= \left(\lim_{n \to \infty}\left(1+\frac{1}{n}\right)\right)\left(\lim_{n \to \infty}a_n\right)=\lim_{n \to \infty}a_n.\]

Euler number. The limit of the sequences \((a_n)_{n \in \mathbb{N}}\) and \((b_n)_{n \in \mathbb{N}}\) is called the Euler number \[\lim_{n \to \infty}\left(1+\frac{1}{n}\right)^n=\lim_{n \to \infty}\left(1+\frac{1}{n}\right)^{n+1}=e \simeq 2,718\ldots .\]

Euler’s number - fact

Fact. If \(\lim_{n \to \infty}a_n=+\infty\) or \(\lim_{n \to \infty}a_n=-\infty\), then \[\lim_{n \to \infty}\left(1+\frac{1}{a_n}\right)^{a_n}=e.\]

Proof. Let \(\lim_{n \to \infty}a_n=+\infty\) and consider \(b_n=\lfloor a_n \rfloor\). Then \(b_n \leq a_n<b_n+1\), hence \[\left(1+\frac{1}{b_n+1}\right)^{b_n}<\left(1+\frac{1}{a_n}\right)^{a_n}<\left(1+\frac{1}{b_n}\right)^{b_n+1}.\]

By the squeeze theorem it suffices to prove that \[\lim_{n \to \infty}\left(1+\frac{1}{b_n+1}\right)^{b_n}=\lim_{n \to \infty}\left(1+\frac{1}{b_n}\right)^{b_n+1}=e\] or even \[{\color{red}\lim_{n \to \infty}\left(1+\frac{1}{b_n}\right)^{b_n}=e}.\]

  • If \((b_n)_{n \in \mathbb{N}}\) were increasing then as a subsequence of \((n)_{n \in \mathbb{N}}\) we could conclude \(\lim_{n \to \infty}\left(1+\frac{1}{b_n}\right)^{b_n}=e\), since \(\lim_{n \to \infty}\left(1+\frac{1}{n}\right)^{n}=e\).

  • But we only know that \(\lim_{n \to \infty}b_n=+\infty\). It does not mean that \((b_n)_{n \in \mathbb{N}}\) is increasing.

Let \(\varepsilon>0\) be given. Since \(\lim_{n \to \infty}\left(1+\frac{1}{n}\right)^{n}=e\) we can find \(\widetilde{N}_{\varepsilon} \in \mathbb{N}\) so that \(n \geq \widetilde{N}_{\varepsilon}\) implies \[\left|\left(1+\frac{1}{n}\right)^n-e\right|<\varepsilon.\]

But \(\lim_{n \to \infty}b_n=+\infty\) thus we can find \(N_{\varepsilon} \in \mathbb{N}\) so that \(n \geq N_{\varepsilon}\) implies \(b_n \geq \widetilde{N}_{\varepsilon}\). In particular, we conclude that \[\left|\left(1+\frac{1}{b_n}\right)^{b_n}-e\right|<\varepsilon\] for all \(n \geq {N}_{\varepsilon}\) and thus

\[\lim_{n \to \infty}\left(1+\frac{1}{b_n}\right)^{b_n}=e.\]

Consequently, \(\lim_{n \to \infty}\left(1+\frac{1}{a_n}\right)^{a_n}=e\) as \(\lim_{n \to \infty}a_n=+\infty\).

Moreover,

\[\lim_{n \to \infty}\left(1-\frac{1}{a_n}\right)^{a_n}=e^{-1},\]

because

\[\lim_{n \to \infty}\left(1-\frac{1}{a_n}\right)^{a_n}=\lim_{n \to \infty}\frac{1}{\left(1+\frac{1}{a_n-1}\right)^{a_n}}=\frac{1}{e}.\] this implies \[\lim_{n \to \infty}\left(1+\frac{1}{a_n}\right)^{a_n}=e \quad \text{ if }\quad \lim_{n \to \infty}a_n=-\infty.\]

Example

Exercise. Find \(\lim_{n \to \infty}\left(1+\frac{1}{2n}\right)^{4n}\).

Solution. Since \((2n)_{n \in \mathbb{N}}\) is a subsequence of \((n)_{n \in \mathbb{N}}\) we have \[\lim_{n \to \infty}\left(1+\frac{1}{2n}\right)^{2n}=e.\] Therefore, \[\begin{aligned} \lim_{n \to \infty}\left(1+\frac{1}{2n}\right)^{4n}&=\left(\lim_{n \to \infty}\left(1+\frac{1}{2n}\right)^{2n}\right)\left(\lim_{n \to \infty}\left(1+\frac{1}{2n}\right)^{2n}\right)\\ &=e \cdot e=e^2. \end{aligned}\] $$\tag*{$\blacksquare$}$$

Exercise. Find \(\lim_{n \to \infty}\left(1+\frac{1}{n^2+1}\right)^{4n^2+1}\).

Solution. Since \((n^2+1)_{n \in \mathbb{N}}\) is a subsequence of \((n)_{n \in \mathbb{N}}\) we have \[\lim_{n \to \infty}\left(1+\frac{1}{n^2+1}\right)^{n^2+1}=e.\] Therefore, \[\begin{aligned} &\lim_{n \to \infty}\left(1+\frac{1}{n^2+1}\right)^{4n^2+1}\\&=\left(\lim_{n \to \infty}\left(1+\frac{1}{n^2+1}\right)^{n^2+1}\right)^4\left(\lim_{n \to \infty}\left(1+\frac{1}{n^2+1}\right)^{-3}\right)=e^4.\end{aligned}\qquad\blacksquare\]

Upper and lower limits

Upper and lower limits

  • We write that \(s_n \ _{\overrightarrow{n \to \infty}}+\infty\) if for every \(M>0\) there is \(n \in \mathbb{N}\) such that \(n \geq N\) implies \(s_n \geq M\).

  • Similarly, \(s_n \ _{\overrightarrow{n \to \infty}}-\infty\) if for every \(M>0\) there is an integer \(N \in \mathbb{N}\) such that \(n \geq N\) implies \(s_n \leq -M\).

Upper limit and lower limit. Let \((s_n)_{n \in \mathbb{N}}\) be a sequence of real numbers.

  • The upper limit is defined by \[\limsup_{n \to \infty}s_n=\inf_{k \geq 1}\sup_{n \geq k}s_n.\]

  • The lower limit is defined by \[\liminf_{n \to \infty}s_n=\sup_{k \geq 1}\inf_{n \geq k}s_n.\]

Proposition

Proposition. For a sequence \((s_n)_{n \in \mathbb{N}}\subset\mathbb R\), the upper and lower limits always exist.

Proof. Let \(\alpha_k=\sup_{n \geq k}s_n\). Then \({\color{blue}\alpha_{k+1} \leq \alpha_k}\) and \[\limsup_{n \to \infty}s_{n}=\inf_{k \geq 1}\sup_{n \geq k}s_n \underbrace{=}_{{\color{blue}(MCT)}}\lim_{n \to \infty}\alpha_k \text{ {\color{red} (possible infinite!)}}.\]

If \(\beta_k=\inf_{n \geq k}s_n\), then \({\color{blue}\beta_k \leq \beta_{k+1}}\) and \[\liminf_{n \to \infty}s_{n}=\sup_{k \geq 1}\inf_{n \geq k}s_n \underbrace{=}_{{\color{blue}(MCT)}}\lim_{n \to \infty}\beta_k \text{ {\color{red} (possible infinite!)}}\tag*{$\blacksquare$}.\]

Remark. We always have \(\beta_k=\inf_{n \geq k}s_n \leq \sup_{n \geq k}s_{n}=\alpha_k\). Thus

\[{\color{red}\liminf_{n \to \infty}a_n=\lim_{k \to \infty }\beta_k \leq \lim_{k \to \infty}\alpha_k = \limsup_{n \to \infty}s_n}.\]

Examples 1/3

Example 1. Consider \(a_n=(-1)^n\frac{n+1}{n}\). Let \[\beta_n=\sup\left\{(-1)^n\frac{n+1}{n},(-1)^{n+1}\frac{n+2}{n+1},\ldots\right\},\] then \[\beta_n=\begin{cases}\frac{n+1}{n} \text{ if }n \text{ is even,}\\ \frac{n+2}{n+1} \text{ if }n \text{ is odd.} \end{cases}\]

Thus \(\lim_{n \to \infty}\beta_n=1\). Therefore \[\limsup_{n \to \infty}a_n=1.\] Similarly \[\liminf_{n \to \infty}a_n=-1.\]

Examples 2/3

Example 2. Let \[a_n=\begin{cases}0 \text{ if }n \text{ is odd},\\ 1 \text{ if }n \text{ is even.} \end{cases}\] Then \[\begin{aligned} \beta_n&=\sup\left\{a_m\;:\;m \geq n\right\}=1, \\ \alpha_n&=\inf\{a_m\;:\;m \geq n\}=0. \end{aligned}\]

Therefore \[\begin{aligned} \limsup_{n \to \infty}a_n&=1,\\ \liminf_{n \to \infty}a_n&=0. \end{aligned}\]

Examples 3/3

Example 3. Let \(a_n=\frac{1}{n}\). Then \[\beta_n=\sup\left\{\frac{1}{m}\;:\;m \geq n\right\}=\frac{1}{n},\] so \(\lim_{n \to \infty}\beta_n=0.\) Similarly \[\alpha_n=\inf\left\{\frac{1}{m}\;:\;m \geq n\right\}=0,\] so \(\lim_{n \to \infty}\alpha_n=0\). Thus \[\limsup_{n \to \infty}a_n=\liminf_{n \to \infty}a_ n=0.\]

Accumulation points of a sequence

Definition. Let \((s_n)_{n \in \mathbb{N}}\) be a sequence of real numbers. We say that \(x \in \mathbb{R} \cup\{\pm \infty\}\) is an accumulation point of \((s_n)_{n \in \mathbb{N}}\) if \[s_{n_k} \ _{\overrightarrow{k \to \infty}}x\] for some subsequence \((s_{n_k})_{k \in \mathbb{N}}\).

Theorem. Let \((s_n)_{n \in \mathbb{N}}\) be a sequence of real numbers. Let \(E\) be the set of all accumulation points of \((s_n)_{n \in \mathbb{N}}\). Then \[\limsup_{n \to \infty}s_n=s^{*}=\sup E,\] \[\liminf_{n \to \infty}s_n=s_{*}=\inf E.\]

Suppose that \[\limsup_{n \to \infty}s_n=+\infty,\] thus \[\inf_{k \geq 1}\sup_{n \geq k}s_n=+\infty,\] so

\[\sup_{n \geq k}s_n=+\infty \quad \text{ for all }\quad k \in \mathbb{N}.\]

Hence there is \((n_k)_{k \in \mathbb{N}}\) so that

\[\lim_{k \to \infty}s_{n_k}=+\infty.\]

this gives \(s^{*}=\sup E=+\infty\). $$\tag*{$\blacksquare$}$$

Suppose that \[\limsup_{n \to \infty}s_n=-\infty,\]

so \[\lim_{k \to \infty}\sup_{n \geq k}s_n=-\infty.\]

This means that for every \(M>0\) there is \(N \in \mathbb{N}\) so that \(k \geq N\) implies \[\sup_{n \geq k}s_n \leq -M.\]

Hence \(s_{n} \leq -M\) for all \(n \geq N\), i.e. \[\lim_{n \to \infty}s_n=-\infty.\]

So \(E=\{-\infty\}\) and \(s^{*}=\sup E=-\infty\). $$\tag*{$\blacksquare$}$$

Claim:. Assume that \(\limsup_{n \to \infty}s_n=L\) and \(L \in \mathbb{R}\). Then

  1. \(\sup E \leq L\),

  2. \(L \in E\),

which implies \(s^{*}=\sup E=L\).

Remark:. This gives a stronger conclusion \[\limsup_{n \to \infty}s_n=\sup E=\max E.\]

  • Suppose that \(L <\sup E\). Thus there is \(x \in E\) such that \[L <x \leq \sup E,\] and there exists a sequence \((s_{n_j})_{j \in \mathbb{N}}\) so that \(\lim_{j \to \infty}s_{n_j}=x\), i.e. for every \(\varepsilon>0\) there exists \(K_0 \in \mathbb{N}\) so that \[j \geq K_0\quad \text{implies} \quad |s_{n_j}-x|<\varepsilon.\]

  • In particular, taking \({\color{red}\varepsilon=\frac{x-L}{2}}\) we obtain that \[{\color{blue}\frac{x+L}{2}=x-\varepsilon <s_{n_j} \quad \text{ for all } \quad j \geq K_0.}\]

  • Since \(\limsup_{n \to \infty}s_n=\inf_{k \geq 1}\sup_{n \geq k}s_n=L\) we obtain that for every \(\varepsilon>0\) there is \(K_{\varepsilon} \in \mathbb{N}\) so that \[k \geq K_{\varepsilon}\quad \text{implies}\quad L \leq \sup_{n \geq k}s_n<L+\varepsilon.\]

Taking \(\varepsilon=\frac{x-L}{2}\) we obtain \[\sup_{n \geq k}s_n<L+\varepsilon=\frac{x+L}{2}.\] Thus picking \(j_0 \geq K_0\) so that \(n_{j_0} \geq K_{\varepsilon}\) we obtain \[s_{n_{j_0}} \leq \sup_{n \geq K_{\varepsilon}}s_n<{\color{blue}\frac{L+x}{2}<s_{n_{j_0}}},\] which is impossible. Thus (a) must be true, i.e. \[\sup E \leq L.\]

  • We now construct \((s_{n_j})_{j \in \mathbb{N}}\) such that \(\lim_{j \to \infty}s_{n_j}=L\).

  • Since \(\limsup_{n \to \infty}s_n=\inf_{k \geq 1}\sup_{n \geq k}s_n=L\) then for any \(\varepsilon>0\) there is \(K_{\varepsilon} \in \mathbb{N}\) so that \(k \geq K_{\varepsilon}\) implies

    (*). \[L \leq \sup_{n \geq k}s_n<L+\varepsilon.\]

  • Let \(\varepsilon=1\) and let \(K_1 \in \mathbb{N}\) so that (*) holds. Then there is \(n_1 \in \mathbb{N}\) such that \[L-1 \leq \sup_{n \geq K_1}s_n-1<s_{n_1}<\sup_{n \geq K_1}s_n<L+1.\]

  • Suppose that we have constructed inductively a sequence \(n_1<n_2<\ldots<n_j\) such that \[L-\frac{1}{j} \leq s_{n_j} \leq L+\frac{1}{j}.\]

  • We now construct \(n_{j+1}\). Set \(\varepsilon=\frac{1}{j+1}\) in (*) which yields a corresponding \(K_{1 / (j+1)} \in \mathbb{N}\). Let \(\widetilde{K}_j=\max(n_j,K_{1 / (j+1)})+1\). Using (*) we see \[L \leq \sup_{n \geq \widetilde{K}_j}s_n<L+\frac{1}{j+1}\] and we find \(n_{j+1}>\widetilde{K}_j>n_j\) such that \[L-\frac{1}{j+1} \leq \sup_{n \geq \widetilde{K}_j}s_n-\frac{1}{j+1}<s_{n_{j+1}} \leq \sup_{n \geq \widetilde{K}_j}s_n<L+\frac{1}{j+1}\] hence \[\lim_{j \to \infty}s_{n_j}=L.\] and we are done. $$\tag*{$\blacksquare$}$$

Proposition

Proposition. A sequence \((s_n)_{n \in \mathbb{N}}\) is convergent and has a limit \(L \in \mathbb{R} \cup\{\pm \infty\}\) iff \[\liminf_{n \to \infty}s_n=\limsup_{n \to \infty}s_n.\]

Proof. If \(\lim_{n \to \infty}s_n=L\), then \(E=\{L\}\) thus \(s^{*}=s_{*}=L\) and by the previous theorem \[\liminf_{n \to \infty}s_n=\limsup_{n \to \infty}s_n=L.\]


Conversely, if \(\liminf_{n \to \infty}s_n=\limsup_{n \to \infty}s_n=L,\) then \[\alpha_k=\inf_{n \geq k}s_n \leq s_k \leq \sup_{n \geq k}s_n=\beta_k\]

and \(\lim_{k \to \infty}\alpha_k=\lim_{k \to \infty}\beta_k=L\), thus \(\lim_{n \to \infty}s_n=L\). $$\tag*{$\blacksquare$}$$

Top