1. Numbers, sets, and induction
2. Proofs and induction; Irrationality of $\sqrt{2}$
3. Least Upper Bounds and Greatest Lower Bounds; Axiom of Completeness, and; Construction of $\mathbb{R}$ from $\mathbb{Q}$
4. Consequences of the Axiom of Completeness; Decimals, Extended Real Number System
5. Dirichlet box principle; Cartesian products, relations and functions
6. Functions and their properties; Trigonometric functions $\sin(\theta)$ and $\cos(\theta)$
7. Axiom of Choice, Cardinality, Cantor's theorem
8. Countable sets, cardinality continuum
9. Inequality between the arithmetic and geometric means; and other useful inequalities
10. The Limit of a Sequence; The Algebraic and Order Limit; Theorems
11. The Squeeze Theorem; The Monotone Convergence Theorem; and other useful theorems
12. Euler's numbers; Subsequences; A First Glance at Infinite Series
13. Toeplitz theorem and applications; Exponential and logarithm function; Bolzano--Weierstrass theorem
14. Completeness; Infinite Series and Euler's numbers
15. Exponential function and logarithm; Upper and Lower limits; Properties of infinite series and; Abel Summation formula
16. Metric spaces basic properties
17. Complete spaces; and Compact sets
18. Compact Sets, Connected Sets; and Cantor set
19. Continuous functions; Continuous functions on compact sets
20. Continuity, compactness and connectivity; Uniform continuity; Sets of Discontinuity
21. Derivatives, the; Mean-Value Theorem and its Consequences; Higher Order Derivatives; Convex and Concave functions
22. Exponential Function and Natural Logarithm Function; Power Series and Taylor's theorem
23. Applications of Calculus: Bernoulli's inequality; and Weighted Mean Inequalities
24. Power series of trigonometric functions done right
25. Riemann Integrals

7. Axiom of Choice, Cardinality, Cantor's theorem  PDF

Axiom of Choice

Set of maps

Cartesian product. If \((X_{\alpha})_{\alpha \in A}\) is an indexed family of sets, their Cartesian product \[\prod_{\alpha \in A}X_{\alpha}\] is the set of all maps \(f:A \to \bigcup_{\alpha \in A}X_{\alpha}\) so that \(f(\alpha)\in X_{\alpha}\) for all \(\alpha \in A\).

Projection map. If \(X=\prod_{\alpha \in A}X_{\alpha}\) and \(\alpha \in A\) we define \(\alpha\)-th projection or coordinate map \(\pi_{\alpha}:X \to X_{\alpha}\) by \(\pi_{\alpha}(f)=f(\alpha)\).

We will also write \(x=(x_{\alpha})_{\alpha \in A} \in X=\prod_{\alpha \in A}X_{\alpha}\) instead of \(f\), and \(x_{\alpha}\) instead of \(f(\alpha)\).

Set of maps - examples 1/2

Example 1. If \(A=\{1,2,\ldots,n\}\), then \[\begin{aligned} X&=\prod_{j=1}^n X_j=X_1 \times X_2 \times \ldots \times X_n\\&=\{(x_1,x_2,\ldots,x_n)\;:\; x_j \in X_j \text{ for all }j=1,2,\ldots,n\}. \end{aligned}\]

Example 2. If \(A=\mathbb{N}\), then \[\begin{aligned} X&=\prod_{j=1}^\infty X_j=X_1 \times X_2 \times \ldots=\{(x_1,x_2,\ldots)\;:\; x_j \in X_j \text{ for all }j=1,2,\ldots\}. \end{aligned}\]

Set of maps - examples 2/2

Example 3. If the sets \(X_{\alpha}\) are all equal to some fixed set \(Y\), we denote \[X=\prod_{\alpha \in A}X_{\alpha}=Y^A.\]

\(Y^{A}\)-the set of all mappings from \(A\) to \(Y\).

Example 4. \(\mathbb{Z}^{\mathbb{N}}\) - the set of all sequences of integers.
\(\mathbb{R}^{\mathbb{N}}\) - the set of all sequences of real numbers.

The axiom of choice

The axiom of choice. If \((X_{\alpha})_{\alpha \in A}\) is a nonempty collection of nonempty sets, then \[\prod_{\alpha \in A}X_{\alpha} \neq \varnothing.\]

Corollary. If \((X_{\alpha})_{\alpha \in A}\) is a disjoint collection of nonempty sets there is a set (called the selector) \(Y \subseteq \bigcup_{\alpha \in A}X_{\alpha}\) such that \(Y \cap X_{\alpha}\) contains precisely one element for each \(\alpha \in A\).

image

image

Take \(f \in \prod_{\alpha \in A}X_{\alpha} \neq \varnothing\). Define \[Y=f[A],\] then

\[Y \cap X_{\alpha}=\{f(\alpha)\},\] since \(f(\alpha) \in X_{\alpha}\).$$\tag*{$\blacksquare$}$$

Cardinality

Cardinality

Cardinality. If \(X\) and \(Y\) are nonempty sets, we define the expressions \[{\rm card\;}(X) \leq {\rm card\;}(Y) \ \ \text{ {\color{red}(injective)}},\] \[{\rm card\;}(X) = {\rm card\;}(Y)\ \ \text{ {\color{red}(bijective)}},\] \[{\rm card\;}(X) \geq {\rm card\;}(Y) \ \ \text{ {\color{red}(surjective)}},\]

to mean that there exists \(f:X \to Y\) which is injective, bijective, surjective respectively.

Cardinality - pictures 1/2

\({\rm card\;}(X) \leq {\rm card\;}(Y),\) (injective) ,.

image

\({\rm card\;}(X) = {\rm card\;}(Y),\) (bijective).

image

Cardinality - pictures 2/2

\({\rm card\;}(X) \geq {\rm card\;}(Y),\) (surjective).

image

  • We also define \({\rm card\;}(X)<{\rm card\;}(Y)\) to mean that there is an injection but not a bijection.

  • We also have \({\rm card\;}(\varnothing) < {\rm card\;}(X)\) and \({\rm card\;}(X)>{\rm card\;}(\varnothing)\) for all \(X \neq \varnothing\).

\({\rm card\;}(X)\) -example

Example. Let \[X=\{1,2,3,4,\ldots\}\] \[Y=\{101,102,103,\ldots,\}.\] Prove that \({\rm card\;}(X)={\rm card\;}(Y)\).

Solution. Let us define \(f:X \to Y\) by \[f(x)=x+100,\] then \(f\) is a bijection between \(X\) and \(Y\), so \({\rm card\;}(X)={\rm card\;}(Y)\).$$\tag*{$\blacksquare$}$$

\({\rm card\;}(X)\) - example

Example. Let \[X=\{1,2,3,4,\ldots\}\] \[Y=\{1^2,2^2,3^2,4^2,\ldots,\}.\] Prove that \({\rm card\;}(X)={\rm card\;}(Y)\).

Solution 1. Let us define \(f:X \to Y\) by \[f(x)=x^2,\] then \(f\) is a bijection between \(X\) and \(Y\), so \({\rm card\;}(X)={\rm card\;}(Y)\).$$\tag*{$\blacksquare$}$$

Solution 2. Let us define \(g: Y \to X\) by \[f(x)=\sqrt{x},\] then \(g\) is a bijection between \(X\) and \(Y\), so \({\rm card\;}(X)={\rm card\;}(Y)\).$$\tag*{$\blacksquare$}$$

Example. Let \[X=\{1,2,3\}\] \[Y=\{2,4,6,8\}.\] Prove that \({\rm card\;}(X)<{\rm card\;}(Y)\).

Solution. Note that \(f(x)=2x\) is an injection from \(X\) to \(Y\), so \({\rm card\;}(X) \leq {\rm card\;}(Y)\). On the other hand, any function from \(X\) to \(Y\) takes at most \(3\) values, so it is not a surjection, so \({\rm card\;}(X)<{\rm card\;}(Y)\).$$\tag*{$\blacksquare$}$$

Example. Let \[X=[0,1]\] \[Y=[1,3].\] Prove that \({\rm card\;}(X)={\rm card\;}(Y)\).

Solution. Let us define \(f:X \to Y\) by \[f(x)=2x+1,\] then \(f\) is a bijection between \(X\) and \(Y\), so \({\rm card\;}(X)={\rm card\;}(Y)\).$$\tag*{$\blacksquare$}$$

Proposition

Proposition. We have \[{\rm card\;}(X) \leq {\rm card\;}(Y) \iff {\rm card\;}(Y) \geq {\rm card\;}(X).\]

Proof (\(\Rightarrow\)). Assume that \({\rm card\;}(X) \leq {\rm card\;}(Y)\). This means that there is an injection \(f:X \to Y\). Thus \(f\) is a bijection \(f:X \to f[X] \subseteq Y\). Let \(f^{-1}\) be the inverse \(f^{-1}:f[X] \to X\). Pick \(x_0 \in X\) and define \(g\) by

\[g(y)=\begin{cases}f^{-1}(y) \text{ if }y \in f[X],\\ g(y)=x_0 \text{ if }y \in Y \setminus f[X]. \end{cases}\].

Then we see that \(g\) is surjective from \(Y\) to \(X\).

Proof (\(\Leftarrow\)). If \({\rm card\;}(Y) \geq {\rm card\;}(X)\), then there is a surjection \(g:Y \to X\). Then \(g[Y]=X\), and, consequently, \(g^{-1}[\{x\}]\) are nonempty and

\[g^{-1}[\{x_1\}] \cap g^{-1}[\{x_2\}] = \varnothing \quad\text{ if }\quad x_1 \neq x_2.\].

image

Using the axiom of choice the set \(\prod_{x \in X}g^{-1}[\{x\}] \neq \varnothing\). Taking \[f \in \prod_{x \in X}g^{-1}[\{x\}]\] we see that \(f\) is an injection from \(X\) to \(Y\). Indeed, if \(x_1 \neq x_2\), then \(f(x_1) \in g^{-1}[\{x_1\}]\) and \(f(x_2) \in g^{-1}[\{x_2\}]\), but \[g^{-1}[\{x_1\}] \cap g^{-1}[\{x_2\}] = \varnothing,\] thus \(f(x_1) \neq f(x_2)\).$$\tag*{$\blacksquare$}$$

\({\rm card\;}(X)\) - example

Example. Let \[X=[0,1],\] \[Y=\left\{\frac{1}{n}\;:\;n \in \mathbb{N}\right\}.\] Prove that \({\rm card\;}(X) \geq {\rm card\;}(Y)\).

Solution. One has \({\rm card\;}(Y) \leq {\rm card\;}(X)\). Indeed, define \(f:Y \to X\) by \[f(x)=x,\] which is injective, so \({\rm card\;}(X) \geq {\rm card\;}(Y)\). $$\tag*{$\blacksquare$}$$

Remark. Actually we have \({\rm card\;}(X) > {\rm card\;}(Y)\), which will be proved later.

Banach lemma

Theorem. For any sets \(X\) and \(Y\) \[\text{ either }\quad {\rm card\;}(X) \leq {\rm card\;}(Y)\quad \text{ or }\quad {\rm card\;}(Y) \leq {\rm card\;}(X).\]

Banach lemma. Let \(f:A \to B\) and \(g:B \to A\) be injections. Then there are sets \(A_1,A_2,B_1,B_2\) such that

  1. \(A_1 \cup A_2=A\) and \(A_1 \cap A_2 = \varnothing\),

  2. \(B_1 \cup B_2=B\) and \(B_1 \cap B_2 = \varnothing\),

  3. \(f[A_1]=B_1\) and \(f[A_2]=B_2\).

Banach lemma - picture

image

Consider the map \(\Phi:P(A) \to P(A)\) defined by \[\Phi(X)=A \setminus g[B \setminus f[X]] \quad \text{ for } \quad X \in P(X).\]

Since \(g\) is injective we note that \[\Phi\left[\bigcup_{t \in I}A_t\right]=\bigcup_{t \in I}\Phi[A_t]\] for any family \((A_t)_{t \in I}\) such that \(A_t \subseteq A\) for all \(t\in I\). Consider \[\Omega=\varnothing \cup \Phi[\varnothing] \cup \Phi \circ \Phi[\varnothing] \cup \ldots \cup \overbrace{\Phi \circ \Phi \circ \ldots \circ \Phi}^n[\varnothing] \cup \ldots,\] in other words \[\Omega=\bigcup_{n=0}^\infty \Phi^n[\varnothing].\]

Then \[\begin{aligned} \Phi[\Omega]=\bigcup_{n=0}^{\infty}\Phi^{n +1}[\varnothing] =\bigcup_{n=1}^{\infty}\Phi^{n}[\varnothing] =\left(\bigcup_{n=1}^{\infty}\Phi^{n}[\varnothing]\right) \cup \varnothing =\bigcup_{n=0}^{\infty}\Phi^{n}[\varnothing] =\Omega, \end{aligned}\] thus the set \(\Omega\) if a fixed point of \(\Phi\), i.e. \(\Phi[\Omega]=\Omega\). Taking \[A_1=\Omega, \ \ A_2=A \setminus A_1,\] \[B_1=f[A_1], \ \ B_2=B \setminus B_1\] we obtain

\[\begin{aligned} A_1=\Phi[A_1]=A \setminus g[B \setminus f[A_1]]=A \setminus g[B \setminus B_1]=A \setminus g[B_2], \end{aligned}\] thus \[\begin{aligned} A_2=A \setminus A_1=A \setminus (A \setminus g[B_2])=g[B_2]. \end{aligned}\]

Cantor–Bernstein–Schröder theorem (1.5.11)

Cantor–Bernstein–Schröder theorem. If \({\rm card\;}(X) \leq {\rm card\;}(Y)\) and \({\rm card\;}(Y) \leq {\rm card\;}(X)\), then \({\rm card\;}(X)={\rm card\;}(Y)\).

Proof. By Banach lemma there are \(A_1,A_2,B_1,B_2\) such that \[A_1 \cup A_2=X, \ \ f[A_1]=B_1, \ \ A_1 \cap A_2 =\varnothing\] \[B_1 \cup B_2=X, \ \ g[B_2]=A_2, \ \ B_1 \cap B_2 =\varnothing\] whenever \(f:X \to Y\) and \(g:Y \to X\) are injections. Define \(h:X \to Y\) by setting

\[h(x)=\begin{cases} f(x) &\text{ if }x \in A_1,\\ g^{-1}(x) &\text{ if }x \in A_2. \end{cases}\].

Then we see that \(h\) is a bijection between \(X\) and \(Y\).$$\tag*{$\blacksquare$}$$

Cantor–Bernstein–Schröder theorem - example

Example. Let \(X=[0,1], \ \ Y=(0,1).\) Prove that \({\rm card\;}(X) = {\rm card\;}(Y)\).

Solution. Note that \({\rm card\;}(Y) \leq {\rm card\;}(X)\), because \(f(x)=x\) is injective. Then, let us prove that \({\rm card\;}(X) \leq {\rm card\;}(Y)\). We define \[g(x)=\frac{x}{4}+\frac{1}{2}.\] One can check that \(g\) is injective, so, by Cantor–Bernstein–Schröder theorem, \({\rm card\;}(X)={\rm card\;}(Y)\).$$\tag*{$\blacksquare$}$$

image

Cantor’s theorem

Theorem (Cantor, Theorem 1.6.2). For any set \(X\) we have \({\rm card\;}(X) < {\rm card\;}(P(X))\).

Proof. The map \(f:X \to P(X)\) defined by \(f(x)=\{x\}\) is an injection from \(X\) to \(P(X)\). Thus \({\rm card\;}(X) \leq {\rm card\;}(P(X))\).

We now show that there is no bijection between \(X\) and \(P(X)\). Let \(g:X \to P(X)\) and consider the set \[{\color{red}Y=\{x \in X\;:\; x \not\in g(x)\}} \in P(X).\] Then we claim that \(Y \not\in g[X]\).

If \[Y=\{x \in X\;:\; x \not\in g(x)\} \in g[X],\] then there is \(x_0 \in X\) so that \({\color{blue}g(x_0)=Y}\).

  • On the one hand \[x_0 \in Y \iff {\color{red} x_0 \not\in g(x_0).}\]

  • On the other hand \[x_0 \in Y \iff {\color{blue}x_0 \in g(x_0)}.\]

  • Thus \[x_0 \in g(x_0) \iff x_0 \not\in g(x_0),\] which is impossible, and we conclude \({\rm card\;}(X)<{\rm card\;}(P(X))\).$$\tag*{$\blacksquare$}$$

Top